自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 Python面试题总结

1、Python是如何进行内存管理的?Python的内存管理主要有三种机制:引用计数机制、垃圾回收机制和内存池机制。a. 引用计数当给一个对象分配一个新名称或者将一个对象放入一个容器(列表、元组或字典)时,该对象的引用计数都会增加。 当使用del对对象显示销毁或者引用超出作用于或者被重新赋值时,该对象的引用计数就会减少。 可以使用sys.getrefcount()函数来获取对象的当前引用计数。多

2016-07-21 01:13:32 456

原创 python 的一些

Bubble sort:def bubble(List): for j in range(len(List)-1,0,-1): for i in range(0, j): if List[i] > List[i+1]: List[i], List[i+1] = List[i+1], List[i] return

2016-07-20 23:50:06 266

原创 数据的标准化

数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。  其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上,常见的数据归一化的方法有:min-max标准化(Min-max normalization)  也叫离差标准

2016-06-30 11:40:17 535

原创 数据挖掘中常用的数据清洗方法

对于数据挖掘来说,80%的工作都花在数据准备上面,而数据准备,80%的时间又花在数据清洗上,而数据清洗的工作,80%又花在选择若干种适当高效的方法上。用不同方法清洗的数据,对后续挖掘的分析工作会带来重大影响。

2016-06-29 14:08:09 19219

原创 kNN

K nearest neighbours is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure (e.g., distance functions).

2016-06-29 13:30:19 509

原创 机器学习和数据挖掘 - 目录

机器学习和数据挖掘的问题一共有一下这些: 分类,聚类,回归,异常检测,关联规则,强化学习,结构预测,特征学习,在线学习,半监督学习,语法归纳。具体的来说:监督学习(分类 · 回归): 决策树, 表征(Bagging提升,随机森林),k-NN,线性回归,朴素贝叶斯,神经网络,逻辑回归,感知器,支持矢量机(SVM),相关矢量机(RVM)聚类: k平均,期望最大化(EM)异常检测 Ano

2016-06-28 19:08:34 493

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除