机器学习和数据挖掘的问题一共有一下这些:
分类,聚类,回归,异常检测,关联规则,强化学习,结构预测,特征学习,在线学习,半监督学习,语法归纳。
具体的来说:
监督学习(分类 · 回归):
决策树, 表征(Bagging提升,随机森林),k-NN,线性回归,朴素贝叶斯,神经网络,逻辑回归,感知器,支持矢量机(SVM),相关矢量机(RVM)
聚类:
k平均,期望最大化(EM)
异常检测 Anomaly detection (also outlier detection)
k-NN 局部离群因子
神经网络
深度学习 RNN 受限玻尔兹曼机
理论
偏差/方差困境 计算学习理论 经验风险最小化 PAC学习 统计学习 VC理论