机器学习和数据挖掘 - 目录

机器学习和数据挖掘的问题一共有一下这些:

分类,聚类,回归,异常检测,关联规则,强化学习,结构预测,特征学习,在线学习,半监督学习,语法归纳。


具体的来说:

监督学习(分类 · 回归):

决策树, 表征(Bagging提升,随机森林),k-NN,线性回归,朴素贝叶斯,神经网络,逻辑回归,感知器,支持矢量机(SVM),相关矢量机(RVM)

聚类:

k平均,期望最大化(EM)

异常检测 Anomaly detection (also outlier detection)

k-NN 局部离群因子

神经网络

深度学习 RNN 受限玻尔兹曼机

理论

偏差/方差困境 计算学习理论 经验风险最小化 PAC学习 统计学习 VC理论


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值