首先,牛是按照编号排序的,所以有d[i]<=d[i+1]。
其次,对于每对关系好的牛之间都有d[Al]+Dl>=d[Bl]。
同样,对于每对关系不好的牛之间都有d[Ad]+Dd<=d[Bd]。
d[i]<=d[i+1]变形为d[i+1]+0>=d[i],因此从顶点i+1向顶点i连一条权值为0的边。
同样,d[Al]+Dl>=d[Bl]对应从顶点Al向顶点Bl连一条权值为d[Bl]的边。
d[Ad]+Dd<=d[Bd]对应从顶点Bd向顶点Ad连一条权值为-Dd的边。
所求问题是d[n]-d[1]的最大值,对应顶点1到顶点n的最小距离。
注意存在负边。
#include <cstdio>
#include <algorithm>
using namespace std;
const int max_ml = 10000 + 10;
const int max_md = 10000 + 10;
const int inf = 1000000000 + 10;
const int maxn = 1000;
int Al[max_ml], Bl[max_ml], Dl[max_ml];
int Ad[max_md], Bd[max_md], Dd[max_md];
int d[maxn];
int main()
{
int n, ml, md;
scanf("%d%d%d", &n, &ml, &md);
for (int i = 0; i < ml; i++) {
scanf("%d%d%d", &Al[i], &Bl[i], &Dl[i]);
}
for (int i = 0; i < md; i++) {
scanf("%d%d%d", &Ad[i], &Bd[i], &Dd[i]);
}
fill(d, d + n, inf);
d[0] = 0;
//用Bellman-Ford算法计算d
for (int k = 0; k < n; k++) {
//从i+1到i的权值为0
for (int i = 0; i + 1 < n; i++) {
if (d[i+1] < inf) {
d[i] = min(d[i], d[i+1]);
}
}
//从Al到Bl的权值为Dl
for (int i = 0; i < ml; i++) {
if (d[Al[i]-1] < inf) {
d[Bl[i]-1] = min(d[Bl[i]-1], d[Al[i]-1] + Dl[i]);
}
}
//从Bd到Ad的权值为-Dd
for (int i = 0; i < md; i++) {
if (d[Bd[i]-1] < inf) {
d[Ad[i]-1] = min(d[Ad[i]-1], d[Bd[i]-1] - Dd[i]);
}
}
}
int res = d[n-1];
if (d[0] < 0)
res = -1;
else if (res == inf)
res = -2;
printf("%d\n", res);
return 0;
};