首先将所有的区间按终点从大到小排序,如果终点相同则按起点从小到大排序,然后用树状数组维护起点总数即可。
由于已经按照终点排序,已经插入区间的终点一定大于当前的区间,因此只需查找起点比当前起点小的区间即为所要求的答案。
#include <cstdio>
#include <cstring>
#include <algorithm>
const int maxn = 100000+1;
#define lowbit(i) ((i) & -(i))
struct itv {
int id, begin, end;
};
itv cow[maxn+10];
int bit[maxn+10];
int cnt[maxn+10];
bool comp(const itv &a, const itv &b) {
if (a.end == b.end) {
return a.begin < b.begin;
}
return a.end > b.end;
}
void add(int i, int delta) {
for (int j = i; j <= maxn; j += lowbit(j)) {
bit[j] += delta;
}
}
int sum(int k) {
int ans = 0;
for (int i = k; i > 0; i -= lowbit(i)) {
ans += bit[i];
}
return ans;
}
int main(int argc, char const *argv[]) {
int n;
while (scanf("%d", &n) == 1 && n) {
memset(bit, 0, sizeof(bit));
for (int i = 0; i < n; i++) {
scanf("%d%d", &cow[i].begin, &cow[i].end);
cow[i].id = i;
cow[i].begin++;
cow[i].end++;
}
std::sort(cow, cow + n, comp);
for (int i = 0; i < n; i++) {
if (i >= 1 && cow[i].begin == cow[i-1].begin && cow[i].end == cow[i-1].end) {
cnt[cow[i].id] = cnt[cow[i-1].id];
} else {
cnt[cow[i].id] = sum(cow[i].begin);
}
add(cow[i].begin, 1);
}
for (int i = 0; i < n; i++) {
if (i) {
putchar(' ');
}
printf("%d", cnt[i]);
}
putchar('\n');
}
return 0;
}