将该问题转换为求从1号顶点到n号顶点的两条没有公共边的路径,即求流量为2的最小费用流。
#include <cstdio>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
const int maxv = 1000 + 10;
const int INF = 350000000 + 10;
typedef pair<int, int> P;
struct edge {
int to, cap, cost, rev;
};
int V;
vector<edge> G[maxv];
int h[maxv];
int dist[maxv];
int prevv[maxv], preve[maxv];
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back((edge){to, cap, cost, G[to].size()});
G[to].push_back((edge){from, 0, -cost, G[from].size() - 1});
}
int min_cost_flow(int s, int t, int f) {
int res = 0;
fill(h, h + V, 0);
while (f > 0) {
priority_queue<P, vector<P>, greater<P> > q;
fill(dist, dist + V, INF);
dist[s] = 0;
q.push(P(0, s));
while (!q.empty()) {
P p = q.top();
q.pop();
int v = p.second;
if (dist[v] < p.first) {
continue;
}
for (int i = 0; i < G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 &&dist[e.to] > dist[v] + e.cost + h[v] - h[e.to]) {
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
q.push(P(dist[e.to], e.to));
}
}
}
if (dist[t] == INF) {
return -1;
}
for (int v = 0; v < V; v++) {
h[v] += dist[v];
}
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
int s = 0, t = n - 1;
V = n;
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add_edge(a-1, b-1, 1, c);
add_edge(b-1, a-1, 1, c);
}
printf("%d\n", min_cost_flow(s, t, 2));
}