【理论】红黑树的实现原理

红黑树

红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。

红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。

红黑树是一种特化的AVL树(平衡二叉树),都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。

它虽然是复杂的,但它的最坏情况运行时间也是非常良好的,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。

介绍

红黑树是一种特定类型的二叉树,它是在计算机科学中用来组织数据比如数字的块的一种结构。若一棵二叉查找树是红黑树,则它的任一子树必为红黑树.

红黑树是一种平衡二叉查找树的变体,它的左右子树高差有可能大于 1,所以红黑树不是严格意义上的平衡二叉树(AVL),但 对之进行平衡的代价较低, 其平均统计性能要强于 AVL 。

由于每一颗红黑树都是一颗二叉排序树,因此,在对红黑树进行查找时,可以采用运用于普通二叉排序树上的查找算法,在查找过程中不需要颜色信息。

特性

红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树增加了如下的额外要求:

  • 性质1. 节点是红色或黑色。
  • 性质2. 根节点是黑色。
  • 性质3. 所有叶子都是黑色。(叶子是NUIL节点)
  • 性质4. 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
  • 性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。

是性质4导致路径上不能有两个连续的红色节点确保了这个结果。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据性质5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。

因为红黑树是一种特化的二叉查找树,所以红黑树上的只读操行与普通二叉查找树相同。
在这里插入图片描述

红黑树基本操作

红黑树的基本操作是添加、删除。在对红黑树进行添加或删除之后,都会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的结点之后,红黑树的结构就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转和变色,可以使这颗树重新成为红黑树。简单点说,旋转和变色的目的是让树保持红黑树的特性:自平衡二叉树。

旋转包括两种:左旋 和 右旋。下面分别对它们进行介绍:

  • 左旋:以某个结点作为支点(旋转结点),其右子结点变为旋转结点的父结点,右子结点的左子结点变为旋转结点的右子结点,其左子结点保持不变。如图2。
  • 右旋:以某个结点作为支点(旋转结点),其左子结点变为旋转结点的父结点,左子结点的右子结点变为旋转结点的左子结点,其右子结点保持不变。如图3。

变色:结点的颜色由红变黑或由黑变红。

左旋

在这里插入图片描述
左旋的伪代码《算法导论》

    LEFT-ROTATE(T, x)  
    	y ← right[x]               // 前提:这里假设x的右孩子为y。下面开始正式操作
    	right[x] ← left[y]         // 将 “y的左孩子” 设为 “x的右孩子”,即 将β设为x的右孩子
    	p[left[y]] ← x             // 将 “x” 设为 “y的左孩子的父亲”,即 将β的父亲设为x
    	p[y] ← p[x]                // 将 “x的父亲” 设为 “y的父亲”
    	if p[x] = nil[T]       
    	then root[T] ← y           // 情况1:如果 “x的父亲” 是空节点,则将y设为根节点
    	else if x = left[p[x]]  
        	then left[p[x]] ← y    // 情况2:如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
    	else right[p[x]] ← y       // 情况3:(x是它父节点的右孩子) 将y设为“x的父节点的右孩子”
    	left[y] ← x                // 将 “x” 设为 “y的左孩子”
    	p[x] ← y                   // 将 “x的父节点” 设为 “y”
右旋

在这里插入图片描述

右旋的伪代码《算法导论》

    RIGHT-ROTATE(T, y)  
    	x ← left[y]             	// 前提:这里假设y的左孩子为x。下面开始正式操作
    	left[y] ← right[x]      	// 将 “x的右孩子” 设为 “y的左孩子”,即 将β设为y的左孩子
    	p[right[x]] ← y         	// 将 “y” 设为 “x的右孩子的父亲”,即 将β的父亲设为y
    	p[x] ← p[y]             	// 将 “y的父亲” 设为 “x的父亲”
    	if p[y] = nil[T]       
    		then root[T] ← x  		// 情况1:如果 “y的父亲” 是空节点,则将x设为根节点
    	else if y = right[p[y]]  
    		then right[p[y]] ← x   	// 情况2:如果 y是它父节点的右孩子,则将x设为“y的父节点的左孩子”
    	else left[p[y]] ← x    		// 情况3:(y是它父节点的左孩子) 将x设为“y的父节点的左孩子”
    	right[x] ← y            	// 将 “y” 设为 “x的右孩子”
    	p[y] ← x                	// 将 “y的父节点” 设为 “x”
区分 左旋 和 右旋

仔细观察上面"左旋"和"右旋"的示意图。我们能清晰的发现,它们是对称的。无论是左旋还是右旋,被旋转的树,在旋转前是二叉查找树,并且旋转之后仍然是一颗二叉查找树。

左旋示例图(以x为节点进行左旋):

                               z
   x                          /                  
  / \      --(左旋)-->       x
 y   z                      /
                           y
对x进行左旋,意味着,将“x的右孩子”设为“x的父亲节点”;
即,将 x变成了一个左节点(x成了为z的左孩子)!。 
因此,左旋中的“左”,意味着“被旋转的节点将变成一个左节点”。

右旋示例图(以x为节点进行右旋):

                               y
   x                            \                 
  / \      --(右旋)-->           x
 y   z                            \
                                   z
对x进行右旋,意味着,将“x的左孩子”设为“x的父亲节点”;
即,将 x变成了一个右节点(x成了为y的右孩子)! 
因此,右旋中的“右”,意味着“被旋转的节点将变成一个右节点”。

插入操作

将一个节点插入到红黑树中,需要执行哪些步骤呢?首先,将红黑树当作一颗二叉查找树,将节点插入;然后,将节点着色为红色;最后,通过旋转和重新着色等方法来修正该树,使之重新成为一颗红黑树

将插入的节点着色为"红色" — 将插入的节点着色为红色,不会违背"特性(5)"!少违背一条特性,就意味着我们需要处理的情况越少。

将插入节点着色为"红色"之后,不会违背"特性(5)"。那它到底会违背哪些特性呢?

  • 对于"特性(1)",显然不会违背了。因为我们已经将它涂成红色了。
  • 对于"特性(2)",显然也不会违背。在第一步中,我们是将红黑树当作二叉查找树,然后执行的插入操作。而根据二叉查找数的特点,插入操作不会改变根节点。所以,根节点仍然是黑色。
  • 对于"特性(3)",显然不会违背了。这里的叶子节点是指的空叶子节点,插入非空节点并不会对它们造成影响。
  • 对于"特性(4)",是有可能违背的!

那接下来,想办法使之"满足特性(4)",就可以将树重新构造成红黑树了。

添加操作的伪代码《算法导论》

RB-INSERT(T, z)  
	y ← nil[T]                		// 新建节点“y”,将y设为空节点。
    x ← root[T]            			// 设“红黑树T”的根节点为“x”
    while x ≠ nil[T]                // 找出要插入的节点“z”在二叉树T中的位置“y”
    	do y ← x                      
    		if key[z] < key[x]  
    			then x ← left[x]  
    			else x ← right[x]  
    p[z] ← y              			// 设置 “z的父亲” 为 “y”
    if y = nil[T]                     
    	then root[T] ← z         	// 情况1:若y是空节点,则将z设为根
    	else if key[z] < key[y]        
    		then left[y] ← z       	// 情况2:若“z所包含的值” < “y所包含的值”,则将z设为“y的左孩子”
    	else right[y] ← z      		// 情况3:(“z所包含的值” >= “y所包含的值”)将z设为“y的右孩子” 
    left[z] ← nil[T]            	// z的左孩子设为空
    right[z] ← nil[T]         		// z的右孩子设为空。至此,已经完成将“节点z插入到二叉树”中了。
    color[z] ← RED               	// 将z着色为“红色”
    RB-INSERT-FIXUP(T, z)        	// 通过RB-INSERT-FIXUP对红黑树的节点进行颜色修改以及旋转,让树T仍然是一颗红黑树
                
RB-INSERT-FIXUP(T, z)
	while color[p[z]] = RED       // 若“当前节点(z)的父节点是红色”,则进行以下处理。
    	do if p[z] = left[p[p[z]]]    // 若“z的父节点”是“z的祖父节点的左孩子”,则进行以下处理。
          then y ← right[p[p[z]]]   // 将y设置为“z的叔叔节点(z的祖父节点的右孩子)”
    	    if color[y] = RED     			// Case 1条件:叔叔是红色
    		  then color[p[z]] ← BLACK   ▹ Case 1   //  (01) 将“父节点”设为黑色。
    			   color[y] ← BLACK      ▹ Case 1   //  (02) 将“叔叔节点”设为黑色。
    			   color[p[p[z]]] ← RED  ▹ Case 1   //  (03) 将“祖父节点”设为“红色”。
    			   z ← p[p[z]]           ▹ Case 1   //  (04) 将“祖父节点”设为“当前节点”(红色节点)
    		else if z = right[p[z]]               // Case 2条件:叔叔是黑色,且当前节点是右孩子
    			      then z ← p[z]            ▹ Case 2   //  (01) 将“父节点”作为“新的当前节点”。
    					   LEFT-ROTATE(T, z)   ▹ Case 2   //  (02) 以“新的当前节点”为支点进行左旋。
    				  color[p[z]] ← BLACK      ▹ Case 3   // Case 3条件:叔叔是黑色,且当前节点是左孩子。(01) 将“父节点”设为“黑色”。
    				  color[p[p[z]]] ← RED     ▹ Case 3   //  (02) 将“祖父节点”设为“红色”。
    				  RIGHT-ROTATE(T, p[p[z]]) ▹ Case 3   //  (03) 以“祖父节点”为支点进行右旋。
        else (same as then clause with "right" and "left" exchanged)      // 若“z的父节点”是“z的祖父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
      color[root[T]] ← BLACK 

根据被插入节点的父节点的情况,可以将"当节点z被着色为红色节点,并插入二叉树"划分为三种情况来处理。

被插入的节点是根节点。

  • 处理方法:把插入结点作为根结点,并把结点设置为黑色。

被插入的节点的父节点是黑色。

  • 处理方法:什么也不需要做。节点被插入后,仍然是红黑树。

被插入的节点的父节点是红色。

  • 处理方法:
    • 该情况与红黑树的“特性(5)”相冲突。这种情况下,被插入节点是一定存在非空祖父节点的;
    • 进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节点本身就是黑色节点)。
    • 理解这点之后,我们依据"叔叔节点的情况",将这种情况进一步划分为3种情况。
叔叔结点存在并且为红结点

现象说明:当前节点(即,被插入节点)的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。

处理策略:

  • 将“父节点”设为黑色。
  • 将“叔叔节点”设为黑色。
  • 将“祖父节点”设为“红色”。
  • 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。

为什么要这样处理:

  • “当前节点”和“父节点”都是红色,违背“特性(4)”。所以,将“父节点”设置“黑色”以解决这个问题。
  • 但是,将“父节点”由“红色”变成“黑色”之后,违背了“特性(5)”:因为,包含“父节点”的分支的黑色节点的总数增加了1。
  • 解决这个问题的办法是:将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”。关于这里,说明几点:
    • 第一,为什么“祖父节点”之前是黑色?这个应该很容易想明白,因为在变换操作之前,该树是红黑树,“父节点”是红色,那么“祖父节点”一定是黑色。
    • 第二,为什么将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;能解决“包含‘父节点’的分支的黑色节点的总数增加了1”的问题。这个道理也很简单。“包含‘父节点’的分支的黑色节点的总数增加了1”同时也意味着“包含‘祖父节点’的分支的黑色节点的总数增加了1”,既然这样,我们通过将“祖父节点”由“黑色”变成“红色”以解决“包含‘祖父节点’的分支的黑色节点的总数增加了1”的问题;但是,这样处理之后又会引起另一个问题“包含‘叔叔’节点的分支的黑色节点的总数减少了1”,现在我们已知“叔叔节点”是“红色”,将“叔叔节点”设为“黑色”就能解决这个问题。所以,将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;就解决了该问题。

按照上面的步骤处理之后:当前节点、父节点、叔叔节点之间都不会违背红黑树特性,但祖父节点却不一定。若此时,祖父节点是根节点,直接将祖父节点设为“黑色”,那就完全解决这个问题了;若祖父节点不是根节点,那我们需要将“祖父节点”设为“新的当前节点”,接着对“新的当前节点”进行分析。

叔叔结点为黑,插入结点是其父结点的右子结点

现象说明:当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子

处理策略

  • 将“父节点”作为“新的当前节点”。
  • 以“新的当前节点”为支点进行左旋。

为什么要这样处理:

  • 首先,将“父节点”作为“新的当前节点”;接着,以“新的当前节点”为支点进行左旋。 为了便于理解,我们先说明第(2)步,再说明第(1)步;
  • 为了便于说明,我们设置“父节点”的代号为F(Father),“当前节点”的代号为S(Son)。
  • 为什么要“以F为支点进行左旋”呢?根据已知条件可知:S是F的右孩子。而之前我们说过,我们处理红黑树的核心思想:将红色的节点移到根节点;然后,将根节点设为黑色。既然是“将红色的节点移到根节点”,那就是说要不断的将破坏红黑树特性的红色节点上移(即向根方向移动)。而S又是一个右孩子,因此,我们可以通过“左旋”来将S上移!

按照上面的步骤(以F为支点进行左旋)处理之后:若S变成了根节点,那么直接将其设为“黑色”,就完全解决问题了;若S不是根节点,那我们需要执行步骤(1),即“将F设为‘新的当前节点’”。

那为什么不继续以S为新的当前节点继续处理,而需要以F为新的当前节点来进行处理呢?这是因为“左旋”之后,F变成了S的“子节点”,即S变成了F的父节点;而我们处理问题的时候,需要从下至上(由叶到根)方向进行处理;也就是说,必须先解决“孩子”的问题,再解决“父亲”的问题;所以,我们执行步骤(1):将“父节点”作为“新的当前节点”。

叔叔结点为黑,插入结点是其父结点的左子结点

现象说明:当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子

处理策略

  • 将“父节点”设为“黑色”。
  • 将“祖父节点”设为“红色”。
  • 以“祖父节点”为支点进行右旋。

为什么要这样处理:

  • 为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“叔叔节点”为U(Uncle),“父节点”为F(Father),祖父节点为G(Grand-Father)。
  • S和F都是红色,违背了红黑树的“特性(4)”,我们可以将F由“红色”变为“黑色”,就解决了“违背‘特性(4)’”的问题;
  • 但却引起了其它问题:违背特性(5),因为将F由红色改为黑色之后,所有经过F的分支的黑色节点的个数增加了1。
  • 那我们如何解决“所有经过F的分支的黑色节点的个数增加了1”的问题呢? 我们可以通过“将G由黑色变成红色”,同时“以G为支点进行右旋”来解决。

删除操作

将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。红黑树的删除操作包括两部分工作:

  • 第一步:查找目标结点,将红黑树当作一颗二叉查找树,将节点删除。这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
    • 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
    • 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
    • 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。在"被删除节点"有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况1"进行处理;若只有一个儿子,则按"情况2"进行处理。
  • 第二步:删除结点后自平衡,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
    • 因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。

告诉大家一种找前继和后继结点的直观的方法:把二叉树所有结点投射在X轴上,所有结点都是从左到右排好序的,所有目标结点的前后结点就是对应的前继和后继结点。如图所示。
在这里插入图片描述
删除操作的伪代码《算法导论》

RB-DELETE(T, z)
    if left[z] = nil[T] or right[z] = nil[T]         
    	then y ← z // 若“z的左孩子” 或 “z的右孩子”为空,则将“z”赋值给 “y”;
    	else y ← TREE-SUCCESSOR(z) // 否则,将“z的后继节点”赋值给 “y”。
    if left[y] ≠ nil[T]
    	then x ← left[y]  // 若“y的左孩子” 不为空,则将“y的左孩子” 赋值给 “x”;
    	else x ← right[y] // 否则,“y的右孩子” 赋值给 “x”。
    p[x] ← p[y]   // 将“y的父节点” 设置为 “x的父节点”
    if p[y] = nil[T]                               
    	then root[T] ← x   // 情况1:若“y的父节点” 为空,则设置“x” 为 “根节点”。
    	else if y = left[p[y]]                    
    		then left[p[y]] ← x // 情况2:若“y是它父节点的左孩子”,则设置“x”为“y的父节点的左孩子”
    		else right[p[y]] ← x // 情况3:若“y是它父节点的右孩子”,则设置“x”为“y的父节点的右孩子”
    if y ≠ z                                    
    	then key[z] ← key[y] // 若“y的值”赋值给“z”。注意:这里只拷贝z的值给y,而没有拷贝z的颜色!!!
    		copy y's satellite data into z         
    if color[y] = BLACK                            
    	then RB-DELETE-FIXUP(T, x)  // 若“y为黑节点”,则调用
    return y 
    
    
RB-DELETE-FIXUP(T, x)
    while x ≠ root[T] and color[x] = BLACK  
    	do if x = left[p[x]]      
    		then w ← right[p[x]] // 若“x”是“它父节点的左孩子”,则设置“w”为“x的叔叔”(即x为它父节点的右孩子)                                          
    			if color[w] = RED // Case 1: x是“黑+黑”节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。
    				then color[w] ← BLACK     ▹  Case 1   //   将x的兄弟节点设为“黑色”。
    					color[p[x]] ← RED    ▹  Case 1   //   将x的父节点设为“红色”。
    					LEFT-ROTATE(T, p[x]) ▹  Case 1   //   对x的父节点进行左旋。
    					w ← right[p[x]]      ▹  Case 1   //   左旋后,重新设置x的兄弟节点。
    			if color[left[w]] = BLACK and color[right[w]] = BLACK // Case 2: x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。
    				then color[w] ← RED ▹  Case 2   //   将x的兄弟节点设为“红色”。
    					x ←  p[x]      ▹  Case 2   //   设置“x的父节点”为“新的x节点”。
    				else if color[right[w]] = BLACK // Case 3: x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。
    					then color[left[w]] ← BLACK  ▹  Case 3   //  将x兄弟节点的左孩子设为“黑色”。
    						color[w] ← RED     ▹  Case 3   //  将x兄弟节点设为“红色”。
    						RIGHT-ROTATE(T, w) ▹  Case 3   //  对x的兄弟节点进行右旋。
    						w ← right[p[x]]    ▹  Case 3   //   右旋后,重新设置x的兄弟节点。
    					color[w] ← color[p[x]]  ▹  Case 4   // Case 4: x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的。将x父节点颜色 赋值给 x的兄弟节点。
    					color[p[x]] ← BLACK     ▹  Case 4   // 将x父节点设为“黑色”。
    					color[right[w]] ← BLACK ▹  Case 4   // 将x兄弟节点的右子节设为“黑色”。
    					LEFT-ROTATE(T, p[x])    ▹  Case 4   // 对x的父节点进行左旋。
    					x ← root[T]             ▹  Case 4   // 设置“x”为“根节点”。
    	else (same as then clause with "right" and "left" exchanged) // 若 “x”是“它父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
    color[x] ← BLACK   

将"删除红黑树中的节点"大致分为两步,在第一步中"将红黑树当作一颗二叉查找树,将节点删除"后,可能违反"特性(2)、(4)、(5)"三个特性。第二步需要解决上面的三个问题,进而保持红黑树的全部特性。

为了便于分析,我们假设"x包含一个额外的黑色"(x原本的颜色还存在),这样就不会违反"特性(5)"。为什么呢?

  • 通过RB-DELETE算法,我们知道:删除节点y之后,x占据了原来节点y的位置。 既然删除y(y是黑色),意味着减少一个黑色节点;那么,再在该位置上增加一个黑色即可。这样,当我们假设"x包含一个额外的黑色",就正好弥补了"删除y所丢失的黑色节点",也就不会违反"特性(5)"。

因此,假设"x包含一个额外的黑色"(x原本的颜色还存在),这样就不会违反"特性(5)"。

现在,x不仅包含它原本的颜色属性,x还包含一个额外的黑色。即x的颜色属性是"红+黑"或"黑+黑",它违反了"特性(1)"。

现在,我们面临的问题,由解决"违反了特性(2)、(4)、(5)三个特性"转换成了"解决违反特性(1)、(2)、(4)三个特性"。RB-DELETE-FIXUP需要做的就是通过算法恢复红黑树的特性(1)、(2)、(4)。RB-DELETE-FIXUP的思想是:将x所包含的额外的黑色不断沿树上移(向根方向移动),直到出现下面的姿态:

  • x指向一个"红+黑"节点。此时,将x设为一个"黑"节点即可。
  • x指向根。此时,将x设为一个"黑"节点即可。
  • 非前面两种姿态。

x是“红+黑”节点。

  • 处理方法: 直接把x设为黑色,结束。此时红黑树性质全部恢复。

x是“黑+黑”节点,且x是根。

  • 处理方法:什么都不做,结束。此时红黑树性质全部恢复。

x是“黑+黑”节点,且x不是根。

  • 处理方法:这种情况又可以划分为4种子情况。
x是"黑+黑"节点,x的兄弟节点是红色

现象说明:x是"黑+黑"节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。

处理策略

  • 将x的兄弟节点设为“黑色”。
  • 将x的父节点设为“红色”。
  • 对x的父节点进行左旋。
  • 左旋后,重新设置x的兄弟节点。

为什么要这样处理:

  • 这样做的目的是将其转换为下面三种情况,从而进行进一步的处理。对x的父节点进行左旋;左旋后,为了保持红黑树特性,就需要在左旋前“将x的兄弟节点设为黑色”,同时“将x的父节点设为红色”;左旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。
x是"黑+黑"节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色

现象说明:x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。

处理策略

  • 将x的兄弟节点设为“红色”。
  • 设置“x的父节点”为“新的x节点”。

为什么要这样处理:

  • 这个情况的处理思想:
    • 是将“x中多余的一个黑色属性上移(往根方向移动)”。 x是“黑+黑”节点,我们将x由“黑+黑”节点 变成 “黑”节点,多余的一个“黑”属性移到x的父节点中,即x的父节点多出了一个黑属性(若x的父节点原先是“黑”,则此时变成了“黑+黑”;若x的父节点原先时“红”,则此时变成了“红+黑”)。
    • 此时,需要注意的是:所有经过x的分支中黑节点个数没变化;但是,所有经过x的兄弟节点的分支中黑色节点的个数增加了1(因为x的父节点多了一个黑色属性)!为了解决这个问题,我们需要将“所有经过x的兄弟节点的分支中黑色节点的个数减1”即可,那么就可以通过“将x的兄弟节点由黑色变成红色”来实现。

经过上面的步骤(将x的兄弟节点设为红色),多余的一个颜色属性(黑色)已经跑到x的父节点中。我们需要将x的父节点设为“新的x节点”进行处理。

  • 若“新的x节点”是“黑+红”,直接将“新的x节点”设为黑色,即可完全解决该问题;
  • 若“新的x节点”是“黑+黑”,则需要对“新的x节点”进行进一步处理。
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的

现象说明:x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。

处理策略

  • 将x兄弟节点的左孩子设为“黑色”。
  • 将x兄弟节点设为“红色”。
  • 对x的兄弟节点进行右旋。
  • 右旋后,重新设置x的兄弟节点。

为什么要这样处理:

  • 我们处理其的目的是为了将其进行转换,转换成下面的情况,从而进行进一步的处理。转换的方式是对x的兄弟节点进行右旋;为了保证右旋后,它仍然是红黑树,就需要在右旋前“将x的兄弟节点的左孩子设为黑色”,同时“将x的兄弟节点设为红色”;右旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色

现象说明:x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。

处理策略

  • 将x父节点颜色 赋值给 x的兄弟节点。
  • 将x父节点设为“黑色”。
  • 将x兄弟节点的右子节设为“黑色”。
  • 对x的父节点进行左旋。
  • 设置“x”为“根节点”。

为什么要这样处理:

  • 去掉x中额外的黑色,将x变成单独的黑色。处理的方式是“:进行颜色修改,然后对x的父节点进行左旋。下面,我们来分析是如何实现的。
  • 为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“兄弟节点的左孩子”为BLS(Brother’s Left Son),“兄弟节点的右孩子”为BRS(Brother’s Right Son),“父节点”为F(Father)。
  • 我们要对F进行左旋。但在左旋前,我们需要调换F和B的颜色,并设置BRS为黑色。为什么需要这里处理呢?因为左旋后,F和BLS是父子关系,而我们已知BLS是红色,如果F是红色,则违背了“特性(4)”;为了解决这一问题,我们将“F设置为黑色”。 但是,F设置为黑色之后,为了保证满足“特性(5)”,即为了保证左旋之后:
    • 第一,“同时经过根节点和S的分支的黑色节点个数不变”。
      若满足“第一”,只需要S丢弃它多余的颜色即可。因为S的颜色是“黑+黑”,而左旋后“同时经过根节点和S的分支的黑色节点个数”增加了1;现在,只需将S由“黑+黑”变成单独的“黑”节点,即可满足“第一”。
  • 第二,“同时经过根节点和BLS的分支的黑色节点数不变”。
    若满足“第二”,只需要将“F的原始颜色”赋值给B即可。之前,我们已经将“F设置为黑色”(即,将B的颜色"黑色",赋值给了F)。至此,我们算是调换了F和B的颜色。
  • 第三,“同时经过根节点和BRS的分支的黑色节点数不变”。
    在“第二”已经满足的情况下,若要满足“第三”,只需要将BRS设置为“黑色”即可。

经过,上面的处理之后。红黑树的特性全部得到的满足!接着,我们将x设为根节点,就可以跳出while循环(参考伪代码);即完成了全部处理。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值