C语言中求最大公约数的算法(三种)

利用指针把三个数从大到小输出
最大公约数:指某几个整数共有约数中最大的一个

方法一:相减法 也叫更相减损法

思路:

1、如果a > b a = a - b;

2、如果b > a b = b - a;

3、假如a = b,则 a或 b是最大公约数;

4、如果a != b;则继续从一开始执行;

5、也就是说循环的判断条件为a != b,直到a = b时,循环结束。

举例说明:

a = 28 b = 21

a>b

则 a = a - b = 28 - 21 = 7

  b = 21    

b>a

则 b = b-a = 21 - 7 = 14

          a = 7

b>a

则 b = b - a = 14 - 7 = 7

         a = 7

此时 a = b =7
循环结束

代码展示

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>

int main()
{
    int a = 0;
    int b = 0;
    printf("输入两个数求最大公约数:");
    scanf("%d%d",&a,&b);
    while(a!=b)
    {
        if(a>b)
        a = a - b;
        if(a<b)
        b = b - a;
    }
    printf("%d\n",a);
    return 0;
}

结果展示
这里写图片描述


方法二
思路:

1.选出a,b中最小的一个数字放到c中
2.分别用a,b对c求余数,即看是否能被c整除
3.直到a,b同时都能被c整除
4.如不能整除,c– (c的值减一) 继续从2开始执行
5.也就是说该循环的判断条件为 a,b能否同时被c整除,只要有一个数不能被c整除,循环继续执行

举例说明:

a = 9 b = 4
将其中最小的数字赋予c
c = 4
a%c = 1 ,b%c = 0 a,b不能同时被c整除 循环继续
c– ,c = 3
a%c = 0 ,b%c = 1 a,b不能同时被c整除 循环继续
c– ,c = 2
a%c = 1 ,b%c = 0 a,b不能同时被c整除 循环继续
c– ,c = 1
a%c = 0 ,b%c = 0 a,b同时被c整除 循环结束 c是a和b的最大公约数

代码展示

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>

int main()
{
    int a = 0;
    int b = 0;
    int c = 0;
    while(1)
    {   printf("输入两个数求最大公约数:");
        scanf("%d%d",&a,&b);
        c = (a>b)?b:a;     //三目运算符 
        while((a%c != 0) || (b%c != 0))
        {
            c--;
        }
        printf("最大公约数为: %d \n",c);
    }
    return 0;
}

结果展示
这里写图片描述


方法三:辗转相除法

思路:
1.将两整数求余 a%b = c
2.如果c = 0;则b为最大公约数
3.如果c != 0,则 a = b;b = c;继续从1开始执行
4.也就是说该循环的是否继续的判断条件就是c是否为0

举例说明:

a = 21 b = 28

c = a%b = 21%28 = 21, 则c = 21 此时c不为0
执行 a = b , b = c , a = 28 ,b = 21

c = a%b = 28%21 = 7 ,则c = 7 此时c不为0
执行 a = b , b = c , a = 21 , b = 7

c = a%b = 21%47 = 0 ,则c = 0 循环结束

代码展示:

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main()
{
    int a = 0;
    int b = 0;
    int c = 0;
    while(1)
    {   
        printf("输入两个数求最大公约数: ");
        scanf("%d%d",&a,&b);
        c = a%b;
        while(c)
        {
            a = b;
            b = c;
            c = a%b;
        }
        printf("最大公约数为: %d\n",b);
    }
    return 0;
}

结果展示
这里写图片描述

### C语言实现最大公约数算法 在C语言中,可以通过多种方式来实现解两个整数的最大公约数(Greatest Common Divisor, GCD)。以下是几种常见的方法及其对应的代码示例。 #### 方法一:穷举法 这种方法通过从较小的数开始逐步减小的方式寻找能够同时被两个数整除的最大值。具体逻辑是从两数中的较小者 `t` 开始尝试,如果当前值能同时整除这两个数,则该值就是它们的最大公约数[^2]。 ```c #include<stdio.h> int main() { int a, b, t; printf("请输入两个正整数: "); scanf("%d%d", &a, &b); if (a < b) t = a; // 取较小值作为初始试探值 else t = b; while(t >= 1){ if((a % t == 0) && (b % t == 0)){ printf("最大公约数为:%d\n", t); break; } t--; } return 0; } ``` #### 方法二:辗转相除法(欧几里得算法) 这是最常用的高效算法之一,其核心思想是基于这样一个事实:两个整数的最大公约数等于其中较小的那个数和两数之差的最大公约数。更进一步可以简化成取模运算的形式[^4]: \[ \text{gcd}(a, b) = \text{gcd}(b, a \% b), \quad 当\ b \neq 0 \] 当 \( b = 0 \),则 \( gcd(a, b) = |a| \)[^4]。 ```c #include<stdio.h> // 辗转相除法函数定义 int gcd(int m, int n) { while(n != 0){ int temp = m % n; m = n; n = temp; } return m; } int main(){ int num1, num2; printf("输入两个正整数:"); scanf("%d%d", &num1, &num2); int result = gcd(num1, num2); printf("最大公约数:%d\n", result); return 0; } ``` 此方法相比穷举法效率更高,在处理较大数值时尤为明显[^4]。 --- ###
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值