C语言中求最大公约数的算法(三种)

利用指针把三个数从大到小输出
最大公约数:指某几个整数共有约数中最大的一个

方法一:相减法 也叫更相减损法

思路:

1、如果a > b a = a - b;

2、如果b > a b = b - a;

3、假如a = b,则 a或 b是最大公约数;

4、如果a != b;则继续从一开始执行;

5、也就是说循环的判断条件为a != b,直到a = b时,循环结束。

举例说明:

a = 28 b = 21

a>b

则 a = a - b = 28 - 21 = 7

  b = 21    

b>a

则 b = b-a = 21 - 7 = 14

          a = 7

b>a

则 b = b - a = 14 - 7 = 7

         a = 7

此时 a = b =7
循环结束

代码展示

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>

int main()
{
    int a = 0;
    int b = 0;
    printf("输入两个数求最大公约数:");
    scanf("%d%d",&a,&b);
    while(a!=b)
    {
        if(a>b)
        a = a - b;
        if(a<b)
        b = b - a;
    }
    printf("%d\n",a);
    return 0;
}

结果展示
这里写图片描述


方法二
思路:

1.选出a,b中最小的一个数字放到c中
2.分别用a,b对c求余数,即看是否能被c整除
3.直到a,b同时都能被c整除
4.如不能整除,c– (c的值减一) 继续从2开始执行
5.也就是说该循环的判断条件为 a,b能否同时被c整除,只要有一个数不能被c整除,循环继续执行

举例说明:

a = 9 b = 4
将其中最小的数字赋予c
c = 4
a%c = 1 ,b%c = 0 a,b不能同时被c整除 循环继续
c– ,c = 3
a%c = 0 ,b%c = 1 a,b不能同时被c整除 循环继续
c– ,c = 2
a%c = 1 ,b%c = 0 a,b不能同时被c整除 循环继续
c– ,c = 1
a%c = 0 ,b%c = 0 a,b同时被c整除 循环结束 c是a和b的最大公约数

代码展示

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>

int main()
{
    int a = 0;
    int b = 0;
    int c = 0;
    while(1)
    {   printf("输入两个数求最大公约数:");
        scanf("%d%d",&a,&b);
        c = (a>b)?b:a;     //三目运算符 
        while((a%c != 0) || (b%c != 0))
        {
            c--;
        }
        printf("最大公约数为: %d \n",c);
    }
    return 0;
}

结果展示
这里写图片描述


方法三:辗转相除法

思路:
1.将两整数求余 a%b = c
2.如果c = 0;则b为最大公约数
3.如果c != 0,则 a = b;b = c;继续从1开始执行
4.也就是说该循环的是否继续的判断条件就是c是否为0

举例说明:

a = 21 b = 28

c = a%b = 21%28 = 21, 则c = 21 此时c不为0
执行 a = b , b = c , a = 28 ,b = 21

c = a%b = 28%21 = 7 ,则c = 7 此时c不为0
执行 a = b , b = c , a = 21 , b = 7

c = a%b = 21%47 = 0 ,则c = 0 循环结束

代码展示:

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
int main()
{
    int a = 0;
    int b = 0;
    int c = 0;
    while(1)
    {   
        printf("输入两个数求最大公约数: ");
        scanf("%d%d",&a,&b);
        c = a%b;
        while(c)
        {
            a = b;
            b = c;
            c = a%b;
        }
        printf("最大公约数为: %d\n",b);
    }
    return 0;
}

结果展示
这里写图片描述

### C语言实现欧几里德算法计算最大公约数 在C语言中,利用欧几里得算法(Euclidean Algorithm),即辗转相除法,能够高效地解两个正整数的最大公约数(Greatest Common Divisor, GCD)[^1]。此方法的核心在于不断执行除法与取模操作直至余数归零,此时最后的非零除数便是所最大公约数。 下面展示了一个遵循特定要编写的`Gcd()`函数实例[^3]: ```c #include <stdio.h> int Gcd(int a, int b) { // 判断输入是否为正整数 if (a <= 0 || b <= 0) { return -1; } while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } int main() { int a, b; printf("Input a,b:\n"); scanf("%d,%d", &a, &b); int result = Gcd(a, b); if(result == -1){ printf("Input error!\n"); }else{ printf("Gcd=%d\n",result); } return 0; } ``` 上述程序首先定义了`Gcd()`函数用于接收两个参数并返回它们之间的最大公约数值。对于非法输入情况(负数或零),该函数会立即终止并向调用者报告错误状态(-1)。接着,在主函数部分提供了友好的命令行界面供用户交互式地提供待处理的数据对,并最终打印出相应的结果或者提示信息。 此外,还存在一种简洁优雅的方式——递归来表达同样的逻辑过程[^4]: ```c #include <stdio.h> // 定义gcd函数,采用递归形式 int gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); } int main(){ int num1,num2; printf("请输入两个数字,以逗号分隔: "); scanf("%d,%d",&num1,&num2); if(num1<=0||num2<=0){ printf("输入有误,请确保输入的是正整数。\n"); }else{ printf("这两个数最大公约数是:%d\n",gcd(num1,num2)); } return 0; } ``` 这种版本不仅保持了原有的功能特性,而且更加直观易懂,减少了显式的循环控制语句,使得代码更具有可读性和美感。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值