- 博客(7)
- 收藏
- 关注
原创 too many values to unpack (expected 4)
ValueError: too many values to unpack (expected 4)
2023-12-03 14:20:05 507 1
原创 批量化图像预处理--高斯去噪、自适应均值、归一化处理
对于获取的原始数据集中,多数存在多种噪音,在进行模型训练之前,如果能够进行一系列的预处理操作,则可以显著的提高识别的精度。实测有效,经过处理后的数据,大概在deeplabv3+语义分割模型miou提高了2%在上面代码中,依次对原始图片经过高斯滤波、自适应直方图均衡化、以及归一化处理。
2023-11-14 13:55:29 247
原创 1.批量化将labelme生成的json文件转化为png图片,并分置于两个文件夹
' # 将此路径替换为包含JSON文件的文件夹路径。' # 将此路径替换为要保存PNG文件的文件夹路径。对应的文件夹路径即可。
2023-09-14 13:44:29 2061 3
原创 2.数据增强之修改Augmentor 生成的output 文件夹,使生成的原图与标签图一一对应
但是生成的原图与标签图在一个output文件中,且图片不是一一对应的,为便于后续的训练,需要。接下里,需要将原图文件中的.png图片,批量化修改成为.jpg文件,便于后续训练了。1.将其重命名,并实现原图与掩码图一一对应。使用Augmentor实现了数据增强,需要修改相应的文件所在路径。
2023-09-14 13:36:38 303 1
原创 使用 Augmentor 批量化进行数据增强
此代码会在原图文件中生成一个output 文件夹,其中包括生成的原图和对应的掩码图。需要把以上两个路径进行修改,即第一为原图文件,第二为对应的标签文件。这里可以参考上一篇博客,批量化的进行图片格式的转换。
2023-09-14 13:19:08 558 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人