CDA Day 7-8 Excel 数组学习总结2

Excel数组学习总结

在还没有深入学习Excel之前,数组和Offset可谓是我眼中的战斗机,难点加难点。

新知识点

  1. Sumproduct是一个数组函数,里面的参数用逗号作为分隔符,不同参数之间是乘法的关系,与Sum不同,sum是加法,还有参数之间的维度要相同,否则计算会出错,因为属于数组函数所以输入正确的语法结构的时候只需要按Enter即可,不需要按组合键。
  2. 数组运算的时候要注意观察是否需要加括号,如果不加括号的情况,Excel会先进行乘法和加法的运算,再进行等号的运算。
  3. 数组运算里面+代替or函数,*代替and函数;
  4. 多行多列的是二维数组,数组中逗号与分号的意义一定要理解
  5. 两个数组的行数取最大值,列数取最大值,即为结果的行列数。例如,数组4区域是4行2列,数组5:区域是2行3列,运算结果区域的行列数即为:4行3列。
  6. 巧用F9键,可以查看数组产生的值或者制作数组常量
  7. 二维数组里同行的元素间用逗号“,分隔,不同的行用分号“;分隔。
  8. 数组计算时,参与计算的两个数组得具有相同的维数,也就是得注意行列数的匹配。
  9. 对于行列数不匹配的数组,在计算时Excel会将数组对象进行扩展,以符合计算需要的维数。每一个参与计算的数组的行数必须与行数最大的数组的行数相同,列数必须与列数最大的数组的列数相同。
  10. Large和small函数也可以引用数组做数组运算,用法类似。
  11. 以一列垂直数组返回一组数据的频率分布,针对于分割点是左开右闭,所以设置分隔点的时候要注意技巧,一般取一个无限接近于我们需要分隔的点的值做分隔,而不直接取我们需要分段的值,有N个分隔点,就有N+1段区域,进行数组运算的时候要选N+1的单元格来存放我们要运算的区域的值。
  12. sumifs里面的条件是前面值是”什么什么“,并不是做等号运算,做的是is运算。

 

 

 

 

 

 

数组学习链接:

http://club.excelhome.net/thread-1287283-1-1.html

总结

概括来讲,数组之间运算。遵循以下顺序:

根据数组的行列数确定运算结果的行列数参与运算的数组扩充区域填充数据进行运算。

即使是多个数组之间的运算,同样也遵循以上规则。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值