python 多进程和多线程
一、进程和线程
1、概念
进程: 一个进程就是一个任务,可以理解为一个程序。一个进程可以有多个线程,至少一个。多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响。
线程: 多线程中,所有变量都由所有线程共享,任何一个变量都可以被任何一个线程修改。
2、优缺点
进程: 创建进程开销(时间和空间)较大,一个子进程崩溃了,不会影响主进程和其他子进程。
线程: 创建线程开销(时间和空间)相对较小,任何一个线程挂掉都可能直接造成整个进程崩溃。
二、多进程
1、使用多进程
from multiprocessing import Process
import os
def run_proc(name):
"""
子进程函数
"""
print('Run child process %s: %s...' % (name, os.getpid()))
if __name__ == '__main__':
# 主进程 id
print('Parent process: %s.' % os.getpid())
# 创建子进程
p = Process(target=run_proc, args=('test',))
print('Child process will start.')
# 开启子进程
p.start()
# 等待子进程运行结束
p.join()
print('Child process end.')
2、进程池
from multiprocessing import Pool
import os
import time
import random
def task(name):
"""
任务函数
"""
print('Run task %s : %s...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds.' % (name, (end - start)))
if __name__ == '__main__':
# 主进程 id
print('Parent process %s.' % os.getpid())
# 指定进程池中进程最大个数,默认为电脑的核数
p = Pool(4)
# 同时开启 5 个进程
for i in range(5):
p.apply_async(task, args=(i,))
print('Waiting for all subprocesses done...')
# 关闭线程池,不再继续添加新的Process
p.close()
# 等待所有子进程执行完毕
p.join()
print('All subprocesses done.')
3、进程间通信:Queue
from multiprocessing import Process, Queue
import os
import time
import random
def write(q):
"""
添加数据到队列中
"""
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random())
def read(q):
"""
从队列中读取数据
"""
print('Process to read: %s' % os.getpid())
while True:
# 读取数据,队列为空时,True:会进入等待状态,直到超时,False:抛出 Empty 异常
value = q.get(True)
print('Get %s from queue.' % value)
if __name__ == '__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
# 创建两个进程
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程 pw 写入
pw.start()
# 启动子进程 pr 读取
pr.start()
# 等待 pw 结束:
pw.join()
# pr进程是死循环,无法等待其结束,只能强行终止:
pr.terminate()
三、多线程
1、使用多线程
import threading
import time
def loop():
"""
子线程任务函数
"""
print('thread %s is running...' % threading.current_thread().name)
time.sleep(2)
print('thread %s ended.' % threading.current_thread().name)
if __name__ == '__main__':
# 主线程名
print('thread %s is running...' % threading.current_thread().name)
# 创建子线程
t = threading.Thread(target=loop, name='LoopThread')
# 开启子线程
t.start()
# 等待子线程运行完毕
t.join()
print('thread %s ended.' % threading.current_thread().name)
2、线程锁
import threading
balance = 0
lock = threading.Lock()
def change_it(n):
"""
先加后减,结果应该为 0
"""
global balance
balance = balance + n
balance = balance - n
def run_thread(n):
"""
子线程任务函数
"""
for i in range(100000):
# 先要获取锁
lock.acquire()
try:
# 只有获得锁的线程才能进行调用
change_it(n)
finally:
# 用完一定要释放锁,这样别的线程才有机会使用
lock.release()
if __name__ == '__main__':
# 创建线程
t1 = threading.Thread(target=run_thread, args=(5,))
t2 = threading.Thread(target=run_thread, args=(8,))
# 开启线程
t1.start()
t2.start()
# 线程阻塞
t1.join()
t2.join()
print(balance)
3、全局锁:GIL 锁
- Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。
- Python 虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python 进程有各自独立的GIL锁,互不影响。
4、线程自己的全局变量:ThreadLocal
import threading
# 创建全局 ThreadLocal 对象
local_school = threading.local()
def process_student():
"""
获取当前线程关联的全局变量 student
"""
# 获得各自线程的全局变量
std = local_school.student
print('Hello, %s (in %s)' % (std, threading.current_thread().name))
def process_thread(name):
"""
子线程任务函数
"""
# 绑定 ThreadLocal 的student:
local_school.student = name
process_student()
if __name__ == '__main__':
t1 = threading.Thread(target=process_thread, args=('A',), name='Thread-A')
t2 = threading.Thread(target=process_thread, args=('B',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()
>>> Hello, A (in Thread-A)
Hello, B (in Thread-B)
GOOD LUCK!