算是一些Transformer学习当中的重点内容 Transformer是一种神经网络结构,由Vaswani等人在2017年的论文Attentions All YouNeed”中提出,用于处理机器翻译、语言建模和文本生成等自然语言处理任务。Transformer同样是encoder-decoder的结构,只不过这里的“encoder”和“decoder”是由无数个同样结构的encoder层和decoder层堆叠组成。
关于Pytorch转换为MindSpore的一点建议 整体来说,只要数据集构建没有问题,网络结构没有问题(需要计算测试)那么框架转换就很简单了,因为训练的流程都大致相同,虽然mindspore里面没有梯度清零什么的但是也有独特的自动微分梯度求导,这个多看几个案例,其实也是一套流程。
预训练是什么? 练而改变),尝试使用 A 的前 50 /100 层去完成任务 B一个任务 A,一个任务 B,两者极其相似,任务 A 已经训练处一个模型 A,使用模型 A 的浅层参数去训练任务 B,得到模型 B。
关于如何得到Mindspore lite所需要的.ms模型 此过程并不复杂,需要注意的是,要在昇腾910的npu环境下训练得到的ckpt模型文件才可以转换,其它如cpu、gpu下得到的模型均不可以,所以可以用启智AI平台来,按照昇思官方给的示例就可以转成。input_np为训练/推理过程输入网络的数据(其中一个),可以先打印出来确定其内容和类型,我这个案例里面用的是(10,1),即一个二维数字,10列1行,这也是为什么数据是这个样子的原因;路径需要替换为自己的mindspore lite地址,后面按照转换示例走一下就可以转换得到,主要容易出错的是环境变量的设置。
NLP快速入门 分词是什么?Tokenizer了解、texts_to_sequences方法了解、 文本为何能序列化?未见过的单词如何处理?序列填充 pad_sequences;打造识别文本情感的模型、循环神经网络、长短期记忆网络(LSTM)、打造一个会写诗的AI
zzulioj1081: n个数求和 (多实例测试) 对于每组输入,在一行输出n个数的和(保证和不会超出int类型的范围)!时间限制: 1 Sec 内存限制: 128 MB。输入第一行是一个整数T,表示有T组测试实例;初做多实例测试,注意累加和变量赋初值的位置。提交: 33539 解决: 21570。1081: n个数求和 (多实例测试)第一行一个数n表示接下来会有n个整数;第二行空格隔开的n个数。
zzulioj1097: 计算平均成绩(函数专题) 输入的成绩均为五级制成绩,五级制成绩转换为百分之成绩的规则如下:'A'转换为百分之成绩为95分,'B'对应85分,C对应75分,'D'对应65分,'E'对应40分。要求程序定义一个getScore()函数和一个main()函数,getScore()函数返回一个等级对应的分数,其余功能在main()函数中实现。对于C/C++代码的提交,本题要求必须通过定义getScore函数和main函数实现,否则,提交编译错误,要提交完整的程序。输入为一行只包含'A'~'E'的字母,每个字母表示一门课的成绩,
虚拟化技术考试重点总结 在操作系统层面增添虚拟服务器功能,没有独立的Hypervisor层。 相反主机操作系统本身就负责在多个虚拟服务器之间分配硬件资源,并且让这些服务器彼此独立,一个明显的区别是,如果使用操作系统层虚拟化,所有虚拟服务器必须运行同一操作系统。 虽操作系统层虚拟化的灵活性比较差,但本机速度性能比较高。此外,由于架构在所有虚拟服务器上使用单一、标准的操作系统,管理起来比异构环境要容易。
python 解决依赖包版本问题 将这个文件夹放到新的环境里,注意要与Python同级,根据requirement.txt配置新环境。执行成功后,会自动生成requirement.txt文件,位置与Python文件同级。requirement.txt这个文件是用于记录所有依赖包及其精确的版本号。主要是解决更换不同电脑,配置的环境,因依赖包版本原因出现的问题。