Derangement
A permutation of n numbers is a sequence of integers from 1 to n where each number is occurred exactly once. If a permutation p1, p2, …, pn has an index i such that pi = i, this index is called a fixed point.
A derangement is a permutation without any fixed points.
Let’s denote the operation swap(a, b) as swapping elements on positions a and b.
For the given permutation find the minimal number of swap operations needed to turn it into derangement.
Input
The first line contains an integer n (2 ≤ n ≤ 200000) — the number of elements in a permutation.
The second line contains the elements of the permutation — n distinct integers from 1 to n.
Output
In the first line output a single integer k — the minimal number of swap operations needed to transform the permutation into derangement.
In each of the next k lines output two integers ai and bi (1 ≤ ai, bi ≤ n) — the arguments of swap operations.
If there are multiple possible solutions, output any of them.
Examples
Input
6
6 2 4 3 5 1
Output
1
2 5
题意:给你一数字的序列,有n个数,1~n,然后要求每个位置与他们的权值不一样,一样的话就得交换,问要将所有的位置和权值的通过交换变成位置和权值不一样的。问最少的交换次数,然后把每次交换的数给列出来
分析:先将位置和权值一样的给找出来,个数为ans。然后如果ans为偶数,则需要ans/2次,奇数需要ans/2+1次。然后将操作的给列出来。
代码:
#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<vector>
#include<math.h>
#include<map>
#include<queue>
#include<algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
int n;
int a[200005];
int main ()
{
while (scanf ("%d",&n)!=EOF){
for (int i=1;i<=n;i++){
scanf ("%d",&a[i]);
}
vector <int> v;
for (int i=1;i<=n;i++){
if (a[i]==i){
v.push_back(i);//记录权值和位置一样的
}
}
int ans=v.size();
if (ans%2==0){
printf ("%d\n",ans/2);
int k=0;
for (int i=0;i<ans/2;i++){
printf ("%d %d\n",v[k++],v[k++]);
}
}
else if (ans==1){
printf ("1\n");
for (int i=1;i<=n;i++){
if (i!=v[0]){
printf ("%d %d",i,v[0]);
break;
}
}
}
else {
int k=0;
printf ("%d\n",ans/2+1);
for (int i=0;i<ans/2-1;i++){
printf ("%d %d\n",v[k++],v[k++]);
}
printf ("%d %d\n",v[k],v[k+1]);
printf ("%d %d\n",v[k],v[k+2]);
}
}
return 0;
}