基本介绍
- 命名实体识别:命名实体识别任务是NLP中的一个基础任务。主要是从一句话中识别出命名实体。比如
姚明在NBA打球
从这句话中应该可以识别出姚明(人), NBA(组织)这样两个实体。
常见的方法是对字或者词打上标签。B-type, I-type, O, 其中B-type表示组成该类型实体的第一个字或词。I-type表示组成该类型实体的中间或最后字或词,O表示该字或词不组成命名实体,当然有的地方也采用B-type, I-type, E-type,O形式。
比如上一句话就可以有如下标签
姚/B-PER 明/I_PER 在/O NBA/B_ORG 打/O 球/O
这样根据标签我们就可以提取出命名实体了
BertForTokenClassification
Bert作为进来比较火的模型,自然官方给出了进行命名实体识别的方法。就是BertForTokenClassfication类。使用如下:
-
引入模型:
from pytorch_pretrained_bert import BertForTokenClassification -
创建模型
model = BertForTokenClassification.from_pretrained(bert_model_dir, num_labels=self.opt.tag_nums)- 参数:
bert_model_dir: bert预训练模型参数num_labels: 词标签类的个数。即(2 or 3)*type+1
- 参数:
-
模型使用
out = model(batch_data, token_type_ids=None, attention_mask=batch_masks, labels=labels)参数解释:
- 输入:
- input_ids:训练集,torch.LongTensor类型,shape是[batch_size, sequence_length]
- token_type_ids:可选项,当训练集是两句话时才有的。
- attention_mask:可选项,当使用mask才有,可参考原论文。
- labels:数据标签,torch.LongTensor类型,shape是[batch_size]
- 输出:
- 如果labels不是None(训练时):输出的是分类的交叉熵
- 如果labels是None(评价时):输出的是shape为[batch_size, num_labels]估计值
- From:https://zhuanlan.zhihu.com/p/56155191
- 输入:
这样通过BertForTokenClassificaiton类,我们就可以很容易实现命名实体识别了。
pytorch-crf
条件随机场(CRF)命名实体识别的传统方法。自深度学习火后,BiLstm+CRF成为命名实体识别的标准方法。具体原理可以参看这篇博客.
由于pytorch官方没有实现条件随机场。但是有人自己实现了pytorch-crf, 是一个不错的开源包。
- pytorch-crf基本操作:https://pytorch-crf.readthedocs.io/en/stable/
- pytorch-crf接入BiLstm:
- 流程:
- BiLstm输出:
- (BatchSize, Sequence Length, 2*hidden_size)
- 经过一个linear层:
- (BatchSize, Sequence Length, tag_nums)
- 可以考虑对
tag_nums这个维度softmax一下. - 最后输入到
CRF中.
- BiLstm输出:
- 输出:
- CRF的前向传播最后输出的是真实标签序列的分数。形式是
l
o
g
(
r
e
a
l
a
l
l
)
log(\frac{real}{all})
log(allreal), 因此是一个负值。作为损失函数需要加一个
负号 - 预测时调用
decode就可以输出(BatchSize, Sequence)的序列标签。 - 具体细节可以参见这个issue
- CRF的前向传播最后输出的是真实标签序列的分数。形式是
l
o
g
(
r
e
a
l
a
l
l
)
log(\frac{real}{all})
log(allreal), 因此是一个负值。作为损失函数需要加一个
- 流程:
457

被折叠的 条评论
为什么被折叠?



