- 博客(4)
- 收藏
- 关注
原创 Ubuntu20.04使用Bisenet v2训练自己的数据
步骤2:通过labelme2dataset-main/labelme2BiSeNet工具进行图片处理,借鉴https://github.com/caozhiwei1994/labelme2dataset链接中的方法,将链接文件下载并解压到任意目录中,打开后有三个文件,进入到labelme2BisSeNet文件夹中,并且将步骤1得到的原图JSON文件放入一个文件夹中,如before,然后执行json_to_dataset.py文件代码,注意修改自己的路径;*****数据预处理完成*****
2025-09-25 10:58:34
913
原创 ubuntu20.04配置yolo v7,训练自己的数据
parser.add_argument('--weights', nargs='+', type=str, default='weights/inlang_waterway_best.pt', help='model.pt path(s)') #训练后的权重。parser.add_argument('--cfg', type=str, default='cfg/training/yolov7-tiny.yaml', help='model.yaml path') #训练模型设置。
2025-09-12 12:02:06
1691
原创 FAST-LIO论文梳理及公式理解
利用紧密耦合的迭代扩展卡尔曼滤波器将激光雷达特征点与IMU数据融合,从而在快速运动、噪声或杂波环境中实现鲁棒导航。为了降低在大量测量条件下的计算量,我们提出了一个新的计算卡尔曼增益的公式。新公式的计算量不再依赖于测量维数,而是依赖于状态维数。
2024-07-16 16:58:08
6064
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅