Ubuntu20.04使用Bisenet v2训练自己的数据

部署运行你感兴趣的模型镜像

   
   1.数据集制作
     步骤1:使用labelme对图片进行标注,得到图片对应的.json文件;

     步骤2:通过labelme2dataset-main/labelme2BiSeNet工具进行图片处理,借鉴https://github.com/caozhiwei1994/labelme2dataset链接中的方法,将链接文件下载并解压到任意目录中,打开后有三个文件,进入到labelme2BisSeNet文件夹中,并且将步骤1得到的原图JSON文件放入一个文件夹中,如before,然后执行json_to_dataset.py文件代码,注意修改自己的路径; (此处需要labelme版本为3.16.*,版本过高需要卸载原来的重新安装)

     步骤3:执行完得到output文件夹,output文件夹下文件(可视化分割)中每个图片都有对应生成的文件夹,然后在labelme2BiSeNet目录下新建class_name.txt,里面包含了我们标记的所有类(包括背景);

     步骤4:运行get_png.py,得到jpg_png文件夹。jpg文件夹是复制before中的jpg格式图像,png文件夹中的图像是24位的灰度图。因为BiSeNet需要8位的灰度图,我们还需要进一步处理;

     步骤5:运行get_dataset.py,得到dataset文件夹,gt_png是原图像(原来是jpg格式,转为png格式),label_png是标注图像(8位的灰度图);

     步骤6:运行train_val.py,dataset中的gt_png和label_png分为train和val文件夹;

     步骤7:运行train_val_txt.py,得到train.txt和val.txt。

     *****数据预处理完成*****
     
   2.数据训练
     步骤1:源码修改——【./configs/bisenetv2_city.py,修改自己标注类别数量,修改数据集路径】,【./lib/cityscapes_cv2.py,更改自己数据表述类别】;

     步骤2:训练数据,单机单卡在终端输入:

            export CUDA_VISIBLE_DEVICES=0
            torchrun --nproc_per_node=1 tools/train_amp.py --config configs/bisenetv2_city.py


    3.使用训练好的模型进行语义分割
           tools文件夹中的demo.py,用于图片语义分割,该程序做如下修改即可运行:

              # args
                parse = argparse.ArgumentParser()
                parse.add_argument('--config', dest='config', type=str, default='configs/bisenetv2_city.py',)  #修改为自己的数据
                parse.add_argument('--weight-path', type=str, default='./res/model_final.pth',)                #训练后的模型
                parse.add_argument('--img-path', dest='img_path', type=str, default='./example.png',)
                args = parse.parse_args()
                cfg = set_cfg_from_file(args.config)

                palette = np.random.randint(0, 256, (256, 3), dtype=np.uint8)

                # define model
                net = model_factory[cfg.model_type](cfg.n_cats, aux_mode='eval')
                #此处调用 torch.load 时没有显式指定 weights_only 参数,因此使用默认值 False,触发了未来版本变更的警告。
                #net.load_state_dict(torch.load(args.weight_path, map_location='cpu'), strict=False)                    
                net.load_state_dict(torch.load(args.weight_path, map_location='cpu', weights_only=True), strict=False)   #修改


           修改完运行:

python tools/demo.py --config configs/bisenetv2_city.py --weight-path /path/to/your/weights.pth --img-path ./example.png

  (源数据和权重文件在demo.py中设置好就不用再设置了,只指定图片即可)

           处理视频使用demeo_video.py
    

python tools/demo_video.py --config configs/bisenetv2_coco.py --weight-path res/model_final.pth --input ./video.mp4 --output res.mp4


  
   
 

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值