一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数 N(1<N<231)。
输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1因子2……*因子k 的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。
输入样例:
630
输出样例:
3
5*6*7
出错原因:
当初自己的算法是先求出这个整数的所有因子,然后存在一个数组中,再去判断哪些是连续的,然后把连续的因子又存入到另外一个数组中,最终表达出来,但是出现了几个问题:
①不会筛选出连续因子
②不知道怎么把表达式按题目的要求输出来
这种解题思路看似可以,但是过于复杂,需要列多个数组,多次遍历数组,因此,排除此方法。
优解思路:
首先判断这个数是不是素数,如果是,则直接输出1 和这个数。否则两重循环,先找到可以被这个数整除的数,再寻找连续因子,如果不能整除则跳出,并记录连续因子的长度大于0的长度和起始的数。最后输出即可。这个思路判断连续因子的想法特别好,要注意学习,就是先连续,再判断是否是因子。
心得:
①看到题目的时候,先去想想能不能分类讨论,类分的越细,解答的越容易
②掌握质数的判断方法,只需遍历到sqrt(n)即可
③掌握数组声明的方法:
声明:例 int select_sort(int array[ ],int n);
函数开头:
int select_sort(int array[ ],int n)
{
}//其中 array是函数名,中括号里面可以不写东西,n为数组的元素数量
调用时直接 select_sort(a,number)即可,不用a[ ],加了中括号反而是错的
优解代码:
#include <string.h>
#include <stdio.h>
#include <math.h>
int is_prime(int n)//判断质数的函数
{
int i;
for(i = 2;i < sqrt(n);i++ )
{
if(n%i==0)
{
break;
}
}
if(i>sqrt(n))
{
return 1;
}
else
{
return 0;
}
}
int main()
{
int i,j