Ollma通过国内源实现模型本地化部署

背景介绍

正常情况下,安装了Ollama后,可以通过简单的指令下载模型,如:

ollama run gemma3:4b

通过ollama下载模型
但在特别情况下,下载模型过程中会由于网络等原因被中断,为此,需要配置国内镜像源。要通过国内镜像源下载 Ollama 模型,可以按照以下方法操作:

操作系统

Ubuntu 20.04 LTS

配置 Ollama 使用国内镜像源

  1. 选择国内镜像源
  • 阿里云:https://registry.ollama.ai
  • DeepSeek 官方镜像:https://ollama.deepseek.com
  • 浙江大学镜像站:https://ollama.zju.edu.cn
  • 魔搭社区:https://ollama.modelscope.cn
  1. 配置 Ollama 镜像源
  • Linux/macOS
    mkdir -p ~/.ollama
    cat << EOF > ~/.ollama/config.json
    {
        "registry": {
            "mirrors": {
                "registry.ollama.ai": "https://registry.ollama.ai"
            }
        }
    }
    EOF
    
  • Windows
  1. 在资源管理器地址栏输入 %USERPROFILE%\.ollama
  2. 新建 config.json 文件,内容如下:
    {
       "registry": {
           "mirrors": {
               "registry.ollama.ai": "https://registry.ollama.ai"
           }
       }
    }
    

修改配置后,可以重启 Ollama 服务以确保配置生效。

sudo systemctl restart ollama
  1. 使用魔搭社区镜像源下载模型
  • 魔搭社区提供了 Ollama 模型的加速下载服务。可以通过以下命令下载模型:
    ollama pull modelscope.cn/unsloth/Mistral-Small-3.1-24B-Instruct-2503-GGUF
    

通过ollama从魔塔社区下载模型

  • 如果需要下载其他模型,可以在魔搭社区的模型库中搜索 GGUF 格式的模型,并替换上述命令中的模型名称。
  1. 通过命令参数指定镜像源
    • 在下载模型时,可以使用 --registry-mirror 参数指定国内镜像源。例如:
      ollama run deepseek-r1:7b --registry-mirror https://registry.ollama.ai
      

常见问题

如果下载速度仍然较慢,可以尝试手动下载模型文件并放置到 ~/.ollama/models 目录中。

  • 如果遇到网络问题,可以检查是否启用了代理或 VPN,可能会影响镜像源的连接。

通过以上方法,可以有效加速 Ollama 模型的下载速度。

### 如何在本地环境中部署Ollma模型 #### 使用Docker部署Ollma 对于希望快速启动并运行大模型的服务,Ollma提供了一种简便的方法来实现在本地环境中的部署。特别是针对Windows系统的用户,推荐采用Docker容器化的方式来完成这一过程。 #### 准备工作 确保已经安装好Docker以及配置好了适用于Linux的子系统(WSL),这对于Windows平台上的操作至关重要[^2]。 #### 获取镜像 为了适应不同硬件条件下的需求,提供了多种版本的选择。如果目标机器不具备GPU支持,则应选择CPU版的官方镜像: ```bash docker pull ollama/ollama:0.3.7-rc6 ``` 这条命令会下载指定标签(`0.3.7-rc6`)下对应于CPU架构的最新稳定版本到用户的计算机上。 #### 启动服务 成功获取所需资源之后,下一步就是创建一个新的容器实例并将该镜像作为基础映射至主机端口之上以便访问API接口: ```bash docker run -d --name my_ollama_service -p 8080:8080 ollama/ollama:0.3.7-rc6 ``` 上述指令中`-d`参数表示以后台模式执行;而`--name`用于定义新建立起来的那个进程的名字;最后部分则是指明要基于哪个具体图像文件去构建新的虚拟空间,并将其内部监听着Web服务器的那一侧开放给外部网络连接请求到达宿主操作系统里所设定好的相应位置(-p选项)。 此时,只要浏览器能够正常解析IP地址并且没有防火墙阻止的话,那么就可以直接通过http://localhost:8080的方式轻松调用已上线的大规模预训练语言理解能力了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值