基于cnn和rnn的文本分类实践 本文主要介绍在文本分类中,使用CNN网络和RNN网络的实践,其中CNN又分为maxPool和k-maxpool。可以直接在juputer执行。代码已经上传githubhttps://github.com/yixiu00001/text-classify-cnn-rnn/blob/master/README.md1.CNN+maxPooltext-classification-cnn-maxpool...
斯坦福 stanford coreNLP 中的PCFG parser-lexparser PCFG模型训练Java -Xmx7g edu.stanford.nlp.parser.lexparser.LexicalizedParser -tLPP edu.stanford.nlp.parser.lexparser.ChineseTreebankParserParams -train data/source/dataCTBZh//bracketed -saveToSerializ...
stanford coreNLP CRFClassifier 模型加载和序列化 源代码位置:ie.crf.CRFClassifier模型加载loadClassifier(String loadPath, Properties props)/** * Loads a classifier from the file, classpath resource, or URL specified by loadPath. If loadPath ends in * .gz, us
stanford CoreNLP 命名实体识别NER学习笔记 简介 识别文本的命名实体,如人名和机构名称等。每种语言识别出的实体是相互独立的,英文的识别集合比其他语言更为丰富。再NERClassifierCombiner中,会执行多个命名实体识别,然后将结果组合起来。识别类别 在英文中,命名实体识别能识别的名字包括:人名、地名、机构名、MISC;数字:钱、数字、序号、百分比;时间:日期,时间、持续序列、集合等实体。命名实体的识别使用组
JAVA json转xml https://mvnrepository.com/artifact/net.sf.json-lib/json-lib/2.4 目前最新的是2.4的版本,json-lib还需要以下依赖包: 通过mvn库可以直接去下载。 jakartacommons-lang 2.5 jakartacommons-beanutils 1.8.0 jakartacom
spark pipeline原理学习和记录 概念MLlib提供标准的机器学习算法API,能够方便的将不同的算法组合成一个独立的管道,或者叫工作流。 • DataFrame:ML API使用Sark SQL中的DataFrme作为机器学习数据集,可容纳各种类型的数据,如DataFrame可能是存储文本的不同列,特征向量,真正的标签或者预测。 • 转换器:Transformer是一种算法,可以将一个DataFrame转换成
知识图谱研究进展 本文首先简要回顾知识图谱的历史,探讨知识图谱研究的意义。其次,介绍知识图谱构建的关键技术,包括实体关系识别技术、知识融合技术、实体链接技术和知识推理技术等。然后,给出现有开放的知识图谱数据集的介绍。最后,给出知识图谱在情报分析中的应用案例。— 漆桂林、高桓、吴天星 东南大学计算机科学与工程学院本文节选自《情报工程》2017 年第 1 期,知识图谱专题稿件。1 知识图谱构建技术本节首先给出知识图谱的
Introducing the Knowledge Graph: things, not strings【阅读翻译】 ntroducing the Knowledge Graph: things, not strings【阅读翻译】
网页数据构建知识图谱-数据和方法 1.网页数据解析 (1)可以参看webkit内核,构建一个网页解析工具,解析dom树/视觉树/分块树,根据需求解析目标数据; (2)构建xpath类规则,提取指定目标数据; (3)解析microdata数据,可以参考pps/babytree,里面的itemscope/itemprop系列标签2.数据来源 (1)百度百科/维基百科等知识词条类 (2)豆瓣类垂直站点 (3)其它类别的站点3.
Cloudera数据科学平台Cloudera Data Science Workbench: Self-Service Data Science for the Enterprise Cloudera Data Science Workbench: Self-Service Data Science for the Enterprise Cloudera数据科学工作台:企业自助数据科学开发环境March 14, 2017 R Python SCALA 使用
python处理windows文本报错:UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4 python处理windows文本报错:UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4
Win10下_findnext()调试时中断 系统重装升级到win10之后,在win7下面可以运行的文件夹遍历代码会中断。 ***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****0x00007FFEC8614ECD (ntdll.dll) (demo.exe 中)处的第一机会异常: 0xC0000005: 写入位置 0x00000000036E0590 时发生访问冲突。0x00007FFEC8614
DeepID2+人脸识别算法学习 DeepID2+在DeepID2的基础上,继续对网络结构做了修改,同时增加了对卷积圣经网络的分析,发现了几个特征:(1)适度稀疏,及时将神经元二值化之后,认证效果依然很好;(2)选择性,高层神经元对认证对象具有高度敏感性,对于同一个人很多神经元会持续保持激活或者抑制状态;(3)和鲁棒性,对于水平遮挡或者随机块遮挡,具有较高的鲁棒性,及时只剩额头和头发,仍然可以达到88.2%的准确率。
DeepId人脸识别算法学习 DeepID的目标是人脸验证(判断两张图片是否是一个人),同时衍生出人脸识别(多次人脸验证)。使用近期比较火的卷积神经网络学习特征,输入一张图片,产出160维的特征向量,然后使用现成的浅层机器学习组合贝叶斯进行分类。由于卷积神经网络计算的特征紧凑且区分度大,所以得到的效果较好。
C++矩阵处理工具Eigen类浅析 参考http://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html1.Matrix 矩阵矩阵类多用于单列vector和单行的vector,多用于密集型矩阵或者vectors容器。Vector是只有一列的矩阵,row-vector是只有一行的矩阵。可以定义为固定大小或者动态大小。templateclass Eigen::Mat
人脸识别国内外现状及发展 分几个方面分别的论述一下人脸识别的技术和产业发展的相关状况。第一,人脸识别技术的价值在哪里。我们把人脸作为一个生物学特征,作为一个商业化运用,只是备选的一个方案之一。生物学当中,唯一的判断的标准,其实识别从精准度的角度和不可替代的角度来讲,最精准的是虹膜,但是虹膜的识别采集成本非常高,识别的效率相对不是很高,需要等待的时间。所以这两个条件约束了整个的产业化运用只能局限在相对小众的,对识别要
opencv中PCA源码理解与训练、使用 /****************************************************************************************\* PCA *\*****************
IplImage, CvMat, Mat 的关系和相互转换 opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplIm
Deep Learning(深度学习)学习笔记整理系列 作者整理了很多深度学习的资料写成的学习笔记,非常适合初学者了解深度学习的概念和思想。转自:http://blog.csdn.net/zouxy09/article/details/8775360目录:一、概述二、背景三、人脑视觉机理四、关于特征 4.1、特征表示的粒度 4.2、初级(浅层
卷积的有意思解释 最幽默的解释 卷积的物理意义 谈起卷积分当然要先说说冲击函数—-这个倒立的小蝌蚪,卷积其实就是为它诞生的。”冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。 古人曰:”说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明”冲击函数”。在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系
openbr简介 OpenBR [3] is a framework for investigating new modalities, improving existing algorithms, interfacing with commercial systems, measuring recognition performance, and deploying automated biometric s
增强现实初始 增强现实,AR(AugmentedReality),从字面理解,即在人们的现实生活场景中叠加虚拟信息,达到对现实世界信息丰富和扩张的效果。1.增强现实的历史人们对增强现实的研究是从1990年代初期开始,当时需要昂贵的硬件设备。初期主要实现方式采用HMD(Head Mounted Display)。随着个人电脑的性能不断改进,2007年左右AR的概念开始逐渐的在专门的研究者之外流传开来。
人工智能的冬天【杨强】 杨强:香港科技大学计算机系主任,华为诺亚方舟实验室主任在2015年的冬季达沃斯会议上,一个著名的中国企业家在中国之夜的聚会上正好坐在我对面。 他早上的时候就坐在我们有关人工智能演讲的会场里。看来, 他仍是意犹未尽,因为他问我问题的时候,眼睛好像在放着光:“我们离人工智能到底有多远?计算机究竟会不会做梦呢?”的确,计算机有没有智能和情感, 会不会做梦,能不能有一天与人
深度学习初识(1) 1.深度学习从生命的生物机理中获得灵感,但是它与大脑的工作原理差别非常巨大。2.描述深度学习:(1)学着描绘世界的机器(machines that learn to represent the word);端对端的机器学习(end-to-end machine learning)。在一个能够学习的机器中,每一个组件、每一个阶段都能进行训练。3.可以把深度学习看成是,通过整合大量能够基于相同
Storm DRPC Distributed RPCThe idea behind distributed RPC (DRPC) is to parallelize the computation of really intense functions on the fly using Storm. The Storm topology takes in as input a stream of functio
storm UI 解释【转】 Storm UI本文主要解释下storm ui上各项属性的含义。1. mainpage 首页主要分为3块: a. Cluster Summary Nimbus uptime: nimbus的启动时间 Supervisors: storm集群中supervisor的数目 used slots: 使用了的slots数
storm基本原理及框架 Tutorial(教程)In this tutorial, you'll learn how to create Storm topologies and deploy them to a Storm cluster. Java will be the main language used, but a few examples will use Python to illustrate
libeblearn tutorial: energy-based learning in C++ libeblearn tutorial: energy-based learning in C++By Pierre Sermanet and Yann LeCun (New York University)The eblearn (energy-based learning) C++library libeblearn contains machine learnin
eblern third-party installation For core libraries libeblearn and libidx only (tools, testers and some demos may not compile):$ sudo apt-get install cmake g++ libatlas-base-dev imagemagick For tools, demos and tester:$ sudo apt-
ubuntu+opencv安装过程记录 在windows下安装了ubuntu虚拟机,记录安装opencv的过程。1.安装ffmpeg 源码下载 : svn checkout svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg 文件配置 : ./configure – -enable-able-shared – -enable-gpl – -enable-swscale 安装 : make && mak
ubuntu 14.10修改源 Ubuntu Night( http://ubuntu9.com ) 的Top mirror功能根据当前的网络情况和源健康状况不断地进行更新当前可用的源的信息,包括了Top fast/near/stable mirror,可以找到当前网络上所有可用的Ubuntu 镜像(即源),并按照平均下载速度和地理位置进行排名。而且,当你找到最适合你的源之后,还可以直接下载它的sources.list 文件
卷积的趣味解释 比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的
opencv-2.4.9入门练习02 #include#includeusing namespace cv; int main(){ Mat lena = imread("lena.jpg"); namedWindow("lean"); imshow("lena", lena); waitKey(); return 0;}~
opencv 基本包 core——定义了基本数据结构,包括最重要的Mat和一些其他的模块imgproc——该模块包括了线性和非线性的图像滤波,图像的几何变换,颜色空间转换,直方图处理等等video——该模块包括运动估计,背景分离,对象跟踪calib3d——基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体相似性算法,3D信息的重建features2d——显著特征检测,描述,特征
mac os cmake安装 1.下载安装程序,地址为http://www.cmake.org/download/,下载Unix/Linux Source (has line feeds)cmake-3.0.2.tar.gz
人脸识别初始 人脸的自动识别是一种重要的生物特征识别技术,具有直接、友好和方便的特点。近年来,视频人脸的跟踪识别技术受到越来越多研究者的关注,原因包括两方面,一:计算机计算和存储成本的大幅度下降使得以视频速度或近似视频速率采集存储图像序列成为可能;二:视频跟踪识别技术的广阔市场应用前景也是推动研究的动力。视频跟踪技术除了在智能视频监控系统中具有非常重要应用外,在视频会议、人机交互、门禁控制及信息安全等场合有着重
机器学习实战-k近邻分类 k-近邻算法(KNN)一。工作原理存在一个样本数据集合,即训练样本集,并且样本集中每个数据都存在标签(样本集中每一数据与所属分类的对应关系),输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签,一般只选择样本数据集中前k个最相似结果,通常k是不大于20的整数,将k个最相似数据中出现次数最多的分类,作为新数据的分类