一休哥的专栏

关注前沿,努力积累
私信 关注
一休Q_Q
码龄13年

数据挖掘、机器学习、知识图谱、人脸识别、深度学习

  • 197,370
    被访问量
  • 39
    原创文章
  • 49,254
    作者排名
  • 48
    粉丝数量
  • 于 2007-10-22 加入CSDN
获得成就
  • 获得25次点赞
  • 内容获得29次评论
  • 获得47次收藏
荣誉勋章
兴趣领域
  • #算法
    #NLP
TA的专栏
  • Machine Learning
    4篇
  • 模式识别
    12篇
  • 品味生活
    2篇
  • opencv
    6篇
  • linux
    2篇
  • storm
    3篇
  • 大数据
    1篇
  • 人脸识别
    4篇
  • 深度学习
    2篇
  • 计算机
    2篇
  • 大数据分析平台
    5篇
  • spark
    1篇
  • 知识图谱
  • JAVA编程
    1篇
  • stanford-coreNLP阅读笔记
    5篇
  • rnn
    1篇
  • cnn
    1篇
  • 文本分类
    1篇
  • 自然语言理解
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

pku98-人民日报分词语料1998年1月份

人民日报分词语料1998年1月份,包含训练和两份语料和汇总语料,可以自行训练和验证模型使用。
zip
发布资源于 3 月前

g2pv.json测试数据源文件

g2pv.json数据可以用于展现前端词云,2.经过一番百度谷歌终于找到G2, 参照官网的例子 https://antv.alipay.com/g2/doc/tutorial/advance/draw-word-cloud.html 3.G2可以根据给定图形生成词云,所以就能够生成自己想要的词云,注意给定的模板图片一定要轮廓分明,最好是外围都是白色
json
发布资源于 2 年前

图片集合

原创
855阅读
0评论
0点赞
发布博客于 2 年前

八爪鱼安装包

八爪鱼安装包,可定制,使用方便,门槛低。
zip
发布资源于 3 年前

基于cnn和rnn的文本分类实践

本文主要介绍在文本分类中,使用CNN网络和RNN网络的实践,其中CNN又分为maxPool和k-maxpool。可以直接在juputer执行。代码已经上传githubhttps://github.com/yixiu00001/text-classify-cnn-rnn/blob/master/README.md1.CNN+maxPooltext-classification-cnn-maxpool...
原创
1269阅读
0评论
0点赞
发布博客于 3 年前

斯坦福 stanford coreNLP 中的PCFG parser-lexparser

PCFG模型训练Java -Xmx7g edu.stanford.nlp.parser.lexparser.LexicalizedParser -tLPP edu.stanford.nlp.parser.lexparser.ChineseTreebankParserParams -train data/source/dataCTBZh//bracketed -saveToSerializ...
原创
2371阅读
5评论
1点赞
发布博客于 4 年前

斯坦福大学Stanford coreNLP 宾州树库依存句法标注体系

斯坦福大学Stanford coreNLP 依存句法标注体系
原创
4584阅读
0评论
1点赞
发布博客于 4 年前

斯坦福stanford coreNLP 宾州树库汉语短语类别表23个

短语分类
原创
2650阅读
0评论
0点赞
发布博客于 4 年前

斯坦福Stanford coreNLP宾州树库的词性标注规范

宾州树库的词性标注规范
原创
5724阅读
0评论
1点赞
发布博客于 4 年前

stanford coreNLP CRFClassifier 模型加载和序列化

源代码位置:ie.crf.CRFClassifier模型加载loadClassifier(String loadPath, Properties props)/** * Loads a classifier from the file, classpath resource, or URL specified by loadPath. If loadPath ends in * .gz, us
原创
1338阅读
0评论
0点赞
发布博客于 4 年前

stanford CoreNLP 命名实体识别NER学习笔记

简介 识别文本的命名实体,如人名和机构名称等。每种语言识别出的实体是相互独立的,英文的识别集合比其他语言更为丰富。再NERClassifierCombiner中,会执行多个命名实体识别,然后将结果组合起来。识别类别       在英文中,命名实体识别能识别的名字包括:人名、地名、机构名、MISC;数字:钱、数字、序号、百分比;时间:日期,时间、持续序列、集合等实体。命名实体的识别使用组
原创
12187阅读
3评论
0点赞
发布博客于 4 年前

JAVA json转xml

https://mvnrepository.com/artifact/net.sf.json-lib/json-lib/2.4 目前最新的是2.4的版本,json-lib还需要以下依赖包: 通过mvn库可以直接去下载。 jakartacommons-lang 2.5 jakartacommons-beanutils 1.8.0 jakartacom
原创
3390阅读
0评论
0点赞
发布博客于 4 年前

推荐系统学习总结

推荐系统,用户行为数据,特征构建,建立连接,候选列别,推荐
原创
2286阅读
0评论
1点赞
发布博客于 4 年前

spark pipeline原理学习和记录

概念MLlib提供标准的机器学习算法API,能够方便的将不同的算法组合成一个独立的管道,或者叫工作流。 • DataFrame:ML API使用Sark SQL中的DataFrme作为机器学习数据集,可容纳各种类型的数据,如DataFrame可能是存储文本的不同列,特征向量,真正的标签或者预测。       • 转换器:Transformer是一种算法,可以将一个DataFrame转换成
原创
10764阅读
0评论
1点赞
发布博客于 4 年前

知识图谱研究进展

本文首先简要回顾知识图谱的历史,探讨知识图谱研究的意义。其次,介绍知识图谱构建的关键技术,包括实体关系识别技术、知识融合技术、实体链接技术和知识推理技术等。然后,给出现有开放的知识图谱数据集的介绍。最后,给出知识图谱在情报分析中的应用案例。— 漆桂林、高桓、吴天星 东南大学计算机科学与工程学院本文节选自《情报工程》2017 年第 1 期,知识图谱专题稿件。1 知识图谱构建技术本节首先给出知识图谱的
转载
4408阅读
0评论
0点赞
发布博客于 4 年前

Introducing the Knowledge Graph: things, not strings【阅读翻译】

ntroducing the Knowledge Graph: things, not strings【阅读翻译】
原创
4173阅读
0评论
1点赞
发布博客于 4 年前

网页数据构建知识图谱-数据和方法

1.网页数据解析 (1)可以参看webkit内核,构建一个网页解析工具,解析dom树/视觉树/分块树,根据需求解析目标数据; (2)构建xpath类规则,提取指定目标数据; (3)解析microdata数据,可以参考pps/babytree,里面的itemscope/itemprop系列标签2.数据来源 (1)百度百科/维基百科等知识词条类 (2)豆瓣类垂直站点 (3)其它类别的站点3.
原创
1699阅读
0评论
1点赞
发布博客于 4 年前

Cloudera数据科学平台Cloudera Data Science Workbench: Self-Service Data Science for the Enterprise

Cloudera Data Science Workbench: Self-Service Data Science for the Enterprise Cloudera数据科学工作台:企业自助数据科学开发环境March 14, 2017 R Python SCALA 使用
原创
2143阅读
1评论
0点赞
发布博客于 4 年前

SeetaFace中科院开源人脸项目Ubuntu下编译

SeetaFace 人脸引擎 ubuntu 14.04 编译执行
原创
6691阅读
8评论
0点赞
发布博客于 5 年前

python处理windows文本报错:UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4

python处理windows文本报错:UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4
原创
3607阅读
0评论
0点赞
发布博客于 5 年前

Win10下_findnext()调试时中断

系统重装升级到win10之后,在win7下面可以运行的文件夹遍历代码会中断。 ***** VIDEOINPUT LIBRARY - 0.1995 - TFW07 *****0x00007FFEC8614ECD (ntdll.dll) (demo.exe 中)处的第一机会异常: 0xC0000005: 写入位置 0x00000000036E0590 时发生访问冲突。0x00007FFEC8614
原创
4701阅读
1评论
4点赞
发布博客于 5 年前

R-CNN+SPP-NET+Fast-R-CNN+Faster-R-CNN+YOLO+SSD阅读笔记

RCNN系列+spp-net+yolo+ssd阅读笔记
原创
8648阅读
3评论
1点赞
发布博客于 5 年前

汉字编码一级字库

一级汉字库
xls
发布资源于 5 年前

DeepID2+人脸识别算法学习

DeepID2+在DeepID2的基础上,继续对网络结构做了修改,同时增加了对卷积圣经网络的分析,发现了几个特征:(1)适度稀疏,及时将神经元二值化之后,认证效果依然很好;(2)选择性,高层神经元对认证对象具有高度敏感性,对于同一个人很多神经元会持续保持激活或者抑制状态;(3)和鲁棒性,对于水平遮挡或者随机块遮挡,具有较高的鲁棒性,及时只剩额头和头发,仍然可以达到88.2%的准确率。
原创
7914阅读
3评论
3点赞
发布博客于 5 年前

DeepID2人脸识别算法学习

DeepID2 验证信号 认证信号
原创
3673阅读
0评论
0点赞
发布博客于 5 年前

DeepId人脸识别算法学习

DeepID的目标是人脸验证(判断两张图片是否是一个人),同时衍生出人脸识别(多次人脸验证)。使用近期比较火的卷积神经网络学习特征,输入一张图片,产出160维的特征向量,然后使用现成的浅层机器学习组合贝叶斯进行分类。由于卷积神经网络计算的特征紧凑且区分度大,所以得到的效果较好。
原创
10338阅读
0评论
1点赞
发布博客于 5 年前

一篇基于pthon和scikt-learn的关于机器学习的介绍

一篇基于pthon和scikt-learn的关于机器学习的介绍 ,监督学习,非监督学习,交叉验证
翻译
5153阅读
0评论
0点赞
发布博客于 5 年前

Mat简介入门

opencv mat
原创
419阅读
0评论
0点赞
发布博客于 5 年前

C++矩阵处理工具Eigen类浅析

参考http://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html1.Matrix 矩阵矩阵类多用于单列vector和单行的vector,多用于密集型矩阵或者vectors容器。Vector是只有一列的矩阵,row-vector是只有一行的矩阵。可以定义为固定大小或者动态大小。templateclass Eigen::Mat
原创
1670阅读
0评论
0点赞
发布博客于 6 年前

人脸识别国内外现状及发展

分几个方面分别的论述一下人脸识别的技术和产业发展的相关状况。第一,人脸识别技术的价值在哪里。我们把人脸作为一个生物学特征,作为一个商业化运用,只是备选的一个方案之一。生物学当中,唯一的判断的标准,其实识别从精准度的角度和不可替代的角度来讲,最精准的是虹膜,但是虹膜的识别采集成本非常高,识别的效率相对不是很高,需要等待的时间。所以这两个条件约束了整个的产业化运用只能局限在相对小众的,对识别要
转载
38443阅读
1评论
4点赞
发布博客于 6 年前

opencv中PCA源码理解与训练、使用

/****************************************************************************************\* PCA *\*****************
原创
3947阅读
1评论
1点赞
发布博客于 6 年前

IplImage, CvMat, Mat 的关系和相互转换

opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化。而CvMat和IplImage类型更侧重于“图像”,opencv对其中的图像操作(缩放、单通道提取、图像阈值操作等)进行了优化。在opencv2.0之前,opencv是完全用C实现的,但是,IplIm
转载
344阅读
0评论
0点赞
发布博客于 6 年前

Deep Learning(深度学习)学习笔记整理系列

作者整理了很多深度学习的资料写成的学习笔记,非常适合初学者了解深度学习的概念和思想。转自:http://blog.csdn.net/zouxy09/article/details/8775360目录:一、概述二、背景三、人脑视觉机理四、关于特征       4.1、特征表示的粒度       4.2、初级(浅层
转载
1380阅读
0评论
0点赞
发布博客于 6 年前

卷积的有意思解释

最幽默的解释 卷积的物理意义 谈起卷积分当然要先说说冲击函数—-这个倒立的小蝌蚪,卷积其实就是为它诞生的。”冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。 古人曰:”说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明”冲击函数”。在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系
转载
495阅读
0评论
1点赞
发布博客于 6 年前

记录

http://blog.csdn.net/smartempire/article/details/23377385
原创
352阅读
0评论
0点赞
发布博客于 6 年前

openbr简介

OpenBR [3] is a framework for investigating new modalities, improving existing algorithms, interfacing with commercial systems, measuring recognition performance, and deploying automated biometric s
翻译
2298阅读
0评论
0点赞
发布博客于 6 年前

互联网进化论

互联网进化论,第四版,上传来供大家下载阅读,互联网和人脑的比对。
pdf
发布资源于 6 年前

增强现实初始

增强现实,AR(AugmentedReality),从字面理解,即在人们的现实生活场景中叠加虚拟信息,达到对现实世界信息丰富和扩张的效果。1.增强现实的历史人们对增强现实的研究是从1990年代初期开始,当时需要昂贵的硬件设备。初期主要实现方式采用HMD(Head Mounted Display)。随着个人电脑的性能不断改进,2007年左右AR的概念开始逐渐的在专门的研究者之外流传开来。
原创
858阅读
0评论
0点赞
发布博客于 6 年前

人工智能的冬天【杨强】

杨强:香港科技大学计算机系主任,华为诺亚方舟实验室主任在2015年的冬季达沃斯会议上,一个著名的中国企业家在中国之夜的聚会上正好坐在我对面。 他早上的时候就坐在我们有关人工智能演讲的会场里。看来, 他仍是意犹未尽,因为他问我问题的时候,眼睛好像在放着光:“我们离人工智能到底有多远?计算机究竟会不会做梦呢?”的确,计算机有没有智能和情感, 会不会做梦,能不能有一天与人
转载
1069阅读
0评论
0点赞
发布博客于 6 年前

深度学习初识(1)

1.深度学习从生命的生物机理中获得灵感,但是它与大脑的工作原理差别非常巨大。2.描述深度学习:(1)学着描绘世界的机器(machines that learn to represent the word);端对端的机器学习(end-to-end machine learning)。在一个能够学习的机器中,每一个组件、每一个阶段都能进行训练。3.可以把深度学习看成是,通过整合大量能够基于相同
原创
541阅读
0评论
0点赞
发布博客于 6 年前

Storm DRPC

Distributed RPCThe idea behind distributed RPC (DRPC) is to parallelize the computation of really intense functions on the fly using Storm. The Storm topology takes in as input a stream of functio
翻译
391阅读
0评论
0点赞
发布博客于 6 年前

storm UI 解释【转】

Storm UI本文主要解释下storm ui上各项属性的含义。1. mainpage    首页主要分为3块:    a. Cluster Summary    Nimbus uptime: nimbus的启动时间    Supervisors: storm集群中supervisor的数目    used slots: 使用了的slots数
转载
313阅读
0评论
0点赞
发布博客于 6 年前

storm基本原理及框架

Tutorial(教程)In this tutorial, you'll learn how to create Storm topologies and deploy them to a Storm cluster. Java will be the main language used, but a few examples will use Python to illustrate
翻译
471阅读
0评论
0点赞
发布博客于 6 年前

libeblearn tutorial: energy-based learning in C++

libeblearn tutorial: energy-based learning in C++By Pierre Sermanet and Yann LeCun (New York University)The eblearn (energy-based learning) C++library libeblearn contains machine learnin
翻译
1226阅读
0评论
0点赞
发布博客于 7 年前

eblern third-party installation

For core libraries libeblearn and libidx only (tools, testers and some demos may not compile):$ sudo apt-get install cmake g++ libatlas-base-dev imagemagick For tools, demos and tester:$ sudo apt-
原创
439阅读
3评论
0点赞
发布博客于 7 年前

ubuntu+opencv安装过程记录

在windows下安装了ubuntu虚拟机,记录安装opencv的过程。1.安装ffmpeg 源码下载 : svn checkout svn://svn.mplayerhq.hu/ffmpeg/trunk ffmpeg 文件配置 : ./configure – -enable-able-shared – -enable-gpl – -enable-swscale 安装 : make && mak
原创
409阅读
0评论
0点赞
发布博客于 7 年前

ubuntu 14.10修改源

Ubuntu Night( http://ubuntu9.com ) 的Top mirror功能根据当前的网络情况和源健康状况不断地进行更新当前可用的源的信息,包括了Top fast/near/stable mirror,可以找到当前网络上所有可用的Ubuntu 镜像(即源),并按照平均下载速度和地理位置进行排名。而且,当你找到最适合你的源之后,还可以直接下载它的sources.list 文件
转载
539阅读
0评论
0点赞
发布博客于 7 年前

卷积的趣味解释

比如说你的老板命令你干活,你却到楼下打台球去了,后来被老板发现,他非常气愤,扇了你一巴掌(注意,这就是输入信号,脉冲),于是你的脸上会渐渐地(贱贱地)鼓起来一个包,你的脸就是一个系统,而鼓起来的包就是你的脸对巴掌的响应,好,这样就和信号系统建立起来意义对应的联系。下面还需要一些假设来保证论证的严谨:假定你的脸是线性时不变系统,也就是说,无论什么时候老板打你一巴掌,打在你脸的同一位置(这似乎要求你的
转载
442阅读
0评论
0点赞
发布博客于 7 年前

win7-64+vs2010+opencv2.4.9安装

操作系统为win7,64操作系统,sh
原创
1157阅读
0评论
0点赞
发布博客于 7 年前

macbook air修复无声音

插耳机在mac下听音乐,待机之后经常无声音,百度找到了解决方法,把音频服务停掉再重新加载,方法如下
原创
3163阅读
0评论
0点赞
发布博客于 7 年前

opencv-2.4.9入门练习02

#include#includeusing namespace cv; int main(){    Mat lena = imread("lena.jpg");    namedWindow("lean");    imshow("lena", lena);    waitKey();    return 0;}~
原创
496阅读
0评论
0点赞
发布博客于 7 年前

opencv-2.4.9组件学习01

opencv-2.4.9的安装文件可以从http://opencv.org/下载,当前
原创
421阅读
0评论
0点赞
发布博客于 7 年前

opencv 基本包

core——定义了基本数据结构,包括最重要的Mat和一些其他的模块imgproc——该模块包括了线性和非线性的图像滤波,图像的几何变换,颜色空间转换,直方图处理等等video——该模块包括运动估计,背景分离,对象跟踪calib3d——基本的多视角几何算法,单个立体摄像头标定,物体姿态估计,立体相似性算法,3D信息的重建features2d——显著特征检测,描述,特征
转载
582阅读
0评论
0点赞
发布博客于 7 年前

mac 安装opencv

mac安装opencv和windows相比,要麻烦一些,现在记录一下安装记录。1.安装cmake   下载cmake,地址为
原创
615阅读
0评论
0点赞
发布博客于 7 年前

mac os cmake安装

1.下载安装程序,地址为http://www.cmake.org/download/,下载Unix/Linux Source (has
line feeds)cmake-3.0.2.tar.gz
原创
18901阅读
0评论
3点赞
发布博客于 7 年前

品味人生20140930-优雅

喜欢,安静的一个人,寻常的日子里,徜徉在一本书里
原创
518阅读
0评论
0点赞
发布博客于 7 年前

品味人生20140928

1.命运是一双手,将你的人生反复拨弄,即便你被困在其中,也无人能伸出援手,唯有zi
原创
444阅读
0评论
0点赞
发布博客于 7 年前

人脸识别初始

人脸的自动识别是一种重要的生物特征识别技术,具有直接、友好和方便的特点。近年来,视频人脸的跟踪识别技术受到越来越多研究者的关注,原因包括两方面,一:计算机计算和存储成本的大幅度下降使得以视频速度或近似视频速率采集存储图像序列成为可能;二:视频跟踪识别技术的广阔市场应用前景也是推动研究的动力。视频跟踪技术除了在智能视频监控系统中具有非常重要应用外,在视频会议、人机交互、门禁控制及信息安全等场合有着重
原创
1540阅读
0评论
0点赞
发布博客于 7 年前

机器学习实战-k近邻分类

k-近邻算法(KNN)一。工作原理存在一个样本数据集合,即训练样本集,并且样本集中每个数据都存在标签(样本集中每一数据与所属分类的对应关系),输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签,一般只选择样本数据集中前k个最相似结果,通常k是不大于20的整数,将k个最相似数据中出现次数最多的分类,作为新数据的分类
原创
357阅读
0评论
0点赞
发布博客于 7 年前

2014年第33次中国互联网络发展状况统计

2014年第33次中国互联网络发展状况统计
pdf
发布资源于 7 年前