题目一:求斐波那契数列的第n项
写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。斐波那契数列的定义如下:
f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)
循环版效率高于递归版,递归容易造成栈溢出。
def fibonacci(n):
if n < 2:
return n
a, b = 0, 1
for ni in range(2, n+1):
a, b = b, a+b
return b
题目二:青蛙跳台阶问题
一只青蛙依次可以跳上1级台阶,也可以跳上2级台阶。
求该青蛙跳上一个n级的台阶总共有多少种跳法。
当n>2时,第一次跳的时候就有两种不同的选择:
-
第一次跳1级:此时的跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1)
-
第一次跳2级:此时的跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)
因此,n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。
def jump_floor_by_one_and_two(n):
if n < 3:
return n
a, b = 1, 2
for ni in range(3, n+1):
a, b = b, a+b
return b
扩展:在青蛙跳台阶问题中,如果把条件改成:
一只青蛙一次可以跳上1级台阶,也可以跳上2级......它也可以跳上n级,
此时该青蛙跳上一个n级的台阶总共有多少种跳法?
根据每次青蛙所跳台阶可以1~n
中的一种,那么青蛙每次的跳法就要包括前面各种跳法,取决于第一次跳的台阶数,即f(n) = f(n-1) + f(n-2) + ... + f(1)
,由数学归纳法得出f(n) = 2 ^ (n-1)
。
class Solution:
def jump_floor(self, number):
if number < 3:
return number
a, b = 1, 2
for ni in range(3, number+1):
b = a+b
a = b+1
return a
(最近更新:2019年09月20日)