剑指Offer:斐波那契数列(Python语言实现)

题目一:求斐波那契数列的第n项

写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。斐波那契数列的定义如下:
f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)

循环版效率高于递归版,递归容易造成栈溢出。

def fibonacci(n):
    if n < 2:
        return n
    a, b = 0, 1
    for ni in range(2, n+1):
        a, b = b, a+b
    return b
题目二:青蛙跳台阶问题

一只青蛙依次可以跳上1级台阶,也可以跳上2级台阶。
求该青蛙跳上一个n级的台阶总共有多少种跳法。

当n>2时,第一次跳的时候就有两种不同的选择:

  • 第一次跳1级:此时的跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1)

  • 第一次跳2级:此时的跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)

因此,n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。

def jump_floor_by_one_and_two(n):
    if n < 3:
        return n
    a, b = 1, 2
    for ni in range(3, n+1):
        a, b = b, a+b
    return b
扩展:在青蛙跳台阶问题中,如果把条件改成:
一只青蛙一次可以跳上1级台阶,也可以跳上2级......它也可以跳上n级,
此时该青蛙跳上一个n级的台阶总共有多少种跳法?

根据每次青蛙所跳台阶可以1~n中的一种,那么青蛙每次的跳法就要包括前面各种跳法,取决于第一次跳的台阶数,即f(n) = f(n-1) + f(n-2) + ... + f(1),由数学归纳法得出f(n) = 2 ^ (n-1)

class Solution:
    def jump_floor(self, number):
        if number < 3:
            return number

        a, b = 1, 2
        for ni in range(3, number+1):
            b = a+b
            a = b+1
        return a

(最近更新:2019年09月20日)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值