1:题目
艾弗里有一个由 N 个正整数构成的数组。
数组中的第 i 个整数是 Ai。
如果一个连续的子数组的长度为 m,并且按顺序包含整数 m,m−1,m−2,…,2,1,则称它为 m 倒计数。
例如,[3,2,1] 是 3 倒计数。
请帮助艾弗里计算她的数组中有多少个 K 倒计数。
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
对于每组数据,第一行包含两个整数 N 和 K。
第二行包含 N 个整数,其中第 i 个表示 Ai。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y,其中 x 为组别编号(从 1 开始),y 为 K 倒计数的数量。
数据范围
1≤T≤100,
2≤K≤N,
1≤Ai≤2×105,
2≤N≤2×105
输入样例:
3
12 3
1 2 3 7 9 3 2 1 8 3 2 1
4 2
101 100 99 98
9 6
100 7 6 5 4 3 2 1 100
输出样例:
Case #1: 2
Case #2: 0
Case #3: 1
样例解释
在示例 1 中,有两个 3 倒计数,如下:
1 2 3 7 9 3 2 1 8 3 2 1
1 2 3 7 9 3 2 1 8 3 2 1
在示例 2 中,没有 2 倒计数。
在示例 3 中,有一个 6 倒计数,如下:
100 7 6 5 4 3 2 1 100
难度:简单
时/空限制:1s / 64MB
总通过数:845
总尝试数:1911
来源:Google Kickstart2020 Round C Problem A
算法标签
2:代码实现
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 200010;
int n, m;
int q[N];
int main()
{
int T;
scanf("%d", &T);
for (int cases = 1; cases <= T; cases ++ )
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &q[i]);
int res = 0;
for (int i = n; i; i -- )
{
if (q[i] != 1) continue;
int j = i - 1;
while (j && q[j] == q[j + 1] + 1) j -- ;
if (i - j >= m) res ++ ;
i = j + 1;
}
printf("Case #%d: %d\n", cases, res);
}
return 0;
}