lower_bound和upper_bound的实现,并与stl的结果进行测试比较

#include <iostream>
#include <algorithm>
using namespace std;
 
// 找第一个大于等于key的下标
int lower_(int *arr, int l, int r, int key)
{
	// 注意 r的取值是最大的合法位置+1
	while (l < r){
		int mid = l + (r - l) / 2;
		if (arr[mid] >= key)
			r = mid;
		else l = mid + 1;
	}
	return r;
}
// 找第一个大于key的下标
int upper_(int *arr, int l, int r, int key)
{
	while (l < r){
		int mid = l + (r - l) / 2;
		if (arr[mid] > key)
			r = mid;
		else l = mid + 1;
	}
	return r;
}
 
void test(int *arr, int l, int r, int k, int i)
{
	int p1 = lower_(arr, l, r, k);
	int p2 = upper_(arr, l, r, k);
	int p3 = lower_bound(arr+l, arr + r, k) - arr;
	int p4 = upper_bound(arr+l, arr + r, k) - arr;
	printf("%dth, lower upper: %d %d    %d %d    %d\n", i, p1, p2, p3, p4, (p1==p3&&p2==p4));
}
 
int main(void)
{ 
	int l = 0, r = 6, k = 3; // 注意 r的取值是最大的合法位置+1
	// 3分布在中间,无重复 
	int a1[6] = {1, 2, 3, 4, 5, 6}; test(a1, l, r, k, 1);
	// 3分布在中间,有重复 
	int a2[6] = {1, 2, 3, 3, 3, 6}; test(a2, l, r, k, 2);
	// 最大值为3 
	int a3[6] = {1, 2, 3, 3, 3, 3}; test(a3, l, r, k, 3);
	// 最小值为3 
	int a4[6] = {3, 3, 4, 5, 5, 6}; test(a4, l, r, k, 4);
	// 没有3 
	int a5[6] = {1, 2, 4, 4, 5, 6}; test(a5, l, r, k, 5);
	// 全为3 
	int a6[6] = {3, 3, 3, 3, 3, 3}; test(a6, l, r, k, 6);
	// 都小于3 
	int a7[6] = {1, 2, 2, 2, 2, 2}; test(a7, l, r, k, 7);
	// 都大于3 
	int a8[6] = {4, 4, 5, 6, 6, 7}; test(a8, l, r, k, 8);
	
	
	return 0;
}
 

运行结果:

测试样例的结果,都是 p1=p3, p2=p4,即手动实现的lower_和upper_跟stl的函数结果是一样的。

如果还有其他测试样例没有考虑到,或者函数有问题,欢迎指出

PS:

对于二分查找中的

int mid = (l + r) / 2

int mid = l + (r - l) / 2

正确应该是使用第二种 ,因为第一种可能会导致溢出

参考1

参考2​​​​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值