#include <iostream>
#include <algorithm>
using namespace std;
// 找第一个大于等于key的下标
int lower_(int *arr, int l, int r, int key)
{
// 注意 r的取值是最大的合法位置+1
while (l < r){
int mid = l + (r - l) / 2;
if (arr[mid] >= key)
r = mid;
else l = mid + 1;
}
return r;
}
// 找第一个大于key的下标
int upper_(int *arr, int l, int r, int key)
{
while (l < r){
int mid = l + (r - l) / 2;
if (arr[mid] > key)
r = mid;
else l = mid + 1;
}
return r;
}
void test(int *arr, int l, int r, int k, int i)
{
int p1 = lower_(arr, l, r, k);
int p2 = upper_(arr, l, r, k);
int p3 = lower_bound(arr+l, arr + r, k) - arr;
int p4 = upper_bound(arr+l, arr + r, k) - arr;
printf("%dth, lower upper: %d %d %d %d %d\n", i, p1, p2, p3, p4, (p1==p3&&p2==p4));
}
int main(void)
{
int l = 0, r = 6, k = 3; // 注意 r的取值是最大的合法位置+1
// 3分布在中间,无重复
int a1[6] = {1, 2, 3, 4, 5, 6}; test(a1, l, r, k, 1);
// 3分布在中间,有重复
int a2[6] = {1, 2, 3, 3, 3, 6}; test(a2, l, r, k, 2);
// 最大值为3
int a3[6] = {1, 2, 3, 3, 3, 3}; test(a3, l, r, k, 3);
// 最小值为3
int a4[6] = {3, 3, 4, 5, 5, 6}; test(a4, l, r, k, 4);
// 没有3
int a5[6] = {1, 2, 4, 4, 5, 6}; test(a5, l, r, k, 5);
// 全为3
int a6[6] = {3, 3, 3, 3, 3, 3}; test(a6, l, r, k, 6);
// 都小于3
int a7[6] = {1, 2, 2, 2, 2, 2}; test(a7, l, r, k, 7);
// 都大于3
int a8[6] = {4, 4, 5, 6, 6, 7}; test(a8, l, r, k, 8);
return 0;
}
运行结果:
测试样例的结果,都是 p1=p3, p2=p4,即手动实现的lower_和upper_跟stl的函数结果是一样的。
如果还有其他测试样例没有考虑到,或者函数有问题,欢迎指出
PS:
对于二分查找中的
int mid = (l + r) / 2
和
int mid = l + (r - l) / 2
正确应该是使用第二种 ,因为第一种可能会导致溢出
参考2