一 题目
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
二 题解
1. 冒泡排序
最简单、直接的解法。
class Solution {
public int[] twoSum(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
for (int j = 0; j < nums.length; j++) {
if (nums[i] + nums[j] == target) {
if (i == j) {//因为题目中的要求不能使用重复数据的
break;
}
System.out.println("answer is :" + i + " " + j);
int ans[] = {i, j};
return ans;
}
}
}
return null;
}
}
不过冒泡排序是每一次外层循环后,选定一个数的位置。但是当前问题并非排序,所以可以稍微简化一些
...
//因为相加不改变位置,所以若1,3位相加比对过,就不需要再比对3,1位
for (int j = i+1; j < nums.length; j++) {
...
2 掩码查找
虽然拿到这个问题的第一反应是冒泡排序,但是这只是在考虑用遍历所有可能性的方式来解决问题,实际上,分析这个问题就能轻易地发现,它并非一个排序问题。(提升对问题的分析能力)
结合题解中的“查找”思路,想到用位数来代表一个数,比如:如果有10,就在第10位上置1。查找的时候就用掩码来比较,至于int [] = {1,1}; target=2
的情况,只要先查找在存储,就可以找到。
比如:[1,8,10] target = 9:
WHEN:
----position = 0, x = 1, y=9-1, recoding= 0
----CHECK 2^y & recoding != 0
----recoding | 2^1
WHEN
----position = 1, x=8, y=9-1, recoding=2^0
----CHECK 2^1 & recoding
但是这个方法的缺陷和容易忽视的点如下:
- 找到存在的数字,但是不知道数字是在第几位。只好在确认有值后再循环一遍保存过的所有数
- 数值是有负值的,只用一个地址空间没办法同时存储
- 只能应对 -63~63 之间的数
/**
* hahaha 被发现程序只能面对-63~63之间的数了,所以加了一个若>63时候的循环查找。但是结果比冒泡查找更慢了233333 需要的空间更多了hahahahahahahaha
* 如果有负值,咋存呢,就再用一个long存
* @param nums
* @param target
* @return
*/
private int[] solution4(int[] nums, int target) {
long recoding_positive = 0;
long recoding_negative = 0;
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int x = nums[i];
int y = target - x; //需要找的
long is_exist = 0;
if (Math.abs(x) > 63 || Math.abs(y) > 63) {//单纯用掩码查找的方式不足以存储存储绝对值在64以上的数
if (map.containsKey(y)) {
return new int[] { map.get(y), i };
}
map.put(x, i);
}
//先找
if (y >= 0) {
is_exist = recoding_positive & (1 << y);
}
if (y <= 0) {//y为负值,用绝对值找
is_exist = recoding_negative & (1 << Math.abs(y));
}
if (is_exist > 0) {//如果存在,那么就要从i之前的数来找到j
for (int j = 0; j < i; j++) {
if (nums[i] + nums[j] == target) {
return new int[]{j, i}; } } }
//如果没找到,更新recoding
if (x >= 0) {
recoding_positive = recoding_positive | (1 << x);
}
if (x <= 0) {
recoding_negative = recoding_negative | (1 << Math.abs(x));
}
}
return null;
}
3. 数据结构——哈希表
三 知识点
1. 数组的初始化
// int ans[] = {i, j};
// return ans;
return new int[]{i, j};
ArrayList<Integer> set = new ArrayList<>();
set.add(1);
set.add(2);
set.add(3);
ArrayList<String> friends = new ArrayList<String>() {{
add("Harry");
add("Tony");
add("Tom");
}};
ArrayList<String> friends = new ArrayList<String>(Arrays.asList("a","b","c"));
2. java的位级运算
1<<10; // 2^10=1024
2 | 2 //= 2;
1 | 2 //= 3;
1 & 2 //= 0;
3 & 1 //= 1