畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 65035 Accepted Submission(s): 34759
还是通过一题来理解并查集
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 21 34 33 31 21 32 35 21 23 5999 00
Sample Output
102998
Hint
Hint Huge input, scanf is recommended.
循环的方法:
#include<bits/stdc++.h>
using namespace std;
const int Max=1005;
int p[Max];
int n,m;
int findth(int x)
{
int a=x;
while(a!=p[a])
a=p[a];//p[a]相当于保存了a的父节点
while(x!=p[x])//路径压缩
{
int t=p[x];
p[x]=a;//a在上面已经改变到父节点了所以把每个p【x】的父节点都设置成a
x=t;//这是更新x好到原本p[x]的父节点 在让这个父节点的父节点变为a
}
return a;
}
void unionn(int x,int y)
{
int x1=findth(x);
int y1=findth(y);
if(x1!=y1)
p[x1]=y;//注意这里是x1,也就是说y是p[x1]的父节点
}
int main()
{
while(~scanf("%d%d",&n,&m)&&n){
for(int i=1;i<=n;i++)
p[i]=i;
int x,y;
for(int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
unionn(x,y);
}
int cnt=0;
for(int i=1;i<=n;++i)
if(p[i]==i)
cnt++;
printf("%d\n",cnt-1);
}
return 0;
}
递归的方法:
#include<bits/stdc++.h>
using namespace std;
const int Max=1005;
int p[Max];
int n,m;
int findth(int x)
{
if(p[x]==x)
return x;
return p[x]=findth(p[x]);
}
void unionn(int x,int y)
{
int x1=findth(x);
int y1=findth(y);
if(x1!=y1)
p[x1]=y;
}
int main()
{
while(~scanf("%d%d",&n,&m)&&n){
for(int i=1;i<=n;i++)
p[i]=i;
int x,y;
for(int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
unionn(x,y);
}
int cnt=0;
for(int i=1;i<=n;++i)
if(p[i]==i)
cnt++;
printf("%d\n",cnt-1);
}
return 0;
}
这是对于查找的理解,在理解查找之前 其实形成一个要查找的都在并union里,也让我加深了递归的理解,研究下路径压缩的递归