题目链接
Description
你有一个神奇的背包,他的容积是m(0<m<=80),只有你装满他,你才能拿走他,现在给你n(1<=n<=20)个物品Xi(Xi<=m),那么一共有几种方式,可以让你拿走背包?
Input
第一行 n,m
第二行 n个数字
Output
输出方案数
Sample Input
3 40 20 20 20
Sample Output
3
以前写过是用的BFS这次比赛换了个方法,这题的原型应该是背包问问题中的,这个给的数相同所以不好用背包问题那个解法,应该可以,现在还没接触过那种方法
#include<bits/stdc++.h>
using namespace std;
int n,m;
int sum=0;
int s[50];
int vis[50];
int a[50];
void dfs(int w,int step)
{
for(int i=a[step-1];i<n;i++){
if((!vis[i])){
w-=s[i];
vis[i]=1;
a[step]=i;
if(w==0){
sum++;
}
else dfs(w,step+1);
w+=s[i];
vis[i]=0;
}
}
}
int main()
{
while(scanf("%d %d",&n, &m)==2){
memset(vis,0,sizeof(vis));
memset(a,0,sizeof(a));
sum=0;
for(int i=0;i<n;i++){
scanf("%d",&s[i]);
}
a[0]=0;
dfs(m,1);
printf("%d\n",sum);
}
return 0;
}
以前做的,
#include<bits/stdc++.h>
using namespace std;
int s[100];
int flag=0;
int n,m;
void bfs(int a,int b)
{
if(a>n||b<=0)
{
if(b==0)
flag++;
return;
}
bfs(a+1,b-s[a]);
bfs(a+1,b);
}
int main()
{
while(scanf("%d%d",&n,&m)==2)
{
for(int i=1;i<=n;i++)
scanf("%d",&s[i]);
flag=0;
bfs(1,m);
printf("%d\n",flag);
}
}
用动态规划也可以做,但是超限了,需要优化
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 1001
#define MOD 2520
#define E 1e-12
using namespace std;
int n,t;
int w[N];
int f[N][N];
int main()
{
while(scanf("%d%d",&n,&t)==2)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&w[i]);
f[i][w[i]]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=t;j++)
if(j<w[i])
f[i][j]+=f[i-1][j];
else
f[i][j]+=f[i-1][j]+f[i-1][j-w[i]];
printf("%d\n",f[n][t]);
}
return 0;
}