给定一个 k+1 位的正整数 N,写成 ak⋯a1a0 的形式,其中对所有 i 有 0≤ai<10 且 ak>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A
是原始的数字,B
是 A
的逆转数,C
是它们的和。A
从输入的整数开始。重复操作直到 C
在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.
;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.
。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
这题得了14分,看网上都是用字符串来做的,而我是用数组做的
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include<list>
#include<cmath>
using namespace std;
vector<int>p;
bool is(int x)
{
vector<int>s;
while (x) {
s.push_back(x % 10);
x /= 10;
}
int len = s.size() - 1;
for (int i = 0;i < s.size() / 2;i++) {
if (s[i] != s[len - i]) return false;
}
return true;
}
int main()
{
int n;
scanf("%d", &n);
if (n == 0) printf("0 is a palindromic number.\n");
else {
int a = n;
for (int i = 0;i < 10;i++) {
p.clear();
int b = 0;
int t = a;
while (t) {
p.push_back(t % 10);
t /= 10;
}
for (int j = 0;j < p.size();j++) {
b = b * 10 + p[j];
}
int c = a + b;
int len = p.size();
printf("%d + ", a);
for (int j = 0;j < p.size();j++) printf("%d", p[j]);
printf(" = %d\n", c);
if (is(c)) {
printf("%d is a palindromic number.\n",c);
return 0;
}
else {
a = c;
}
}
printf("Not found in 10 iterations.\n");
}
}