D. Pair of Numbers
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find a pair of integers l, r (1 ≤ l ≤ r ≤ n), such that the following conditions hold:
- there is integer j (l ≤ j ≤ r), such that all integers al, al + 1, ..., ar are divisible by aj;
- value r - l takes the maximum value among all pairs for which condition 1 is true;
Help Simon, find the required pair of numbers (l, r). If there are multiple required pairs find all of them.
Input
The first line contains integer n (1 ≤ n ≤ 3·105).
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 106).
Output
Print two integers in the first line — the number of required pairs and the maximum value of r - l. On the following line print all l values from optimal pairs in increasing order.
Examples
input
5 4 6 9 3 6
output
1 3 2
input
5 1 3 5 7 9
output
1 4 1
input
5 2 3 5 7 11
output
5 0 1 2 3 4 5
题意是个出n个数字,求最长的区间,使得该区间内存在一个数字能够整除这个区间内的所有数字。
第一行输出最长的区间有多少个和(区间长度-1),第二行从小到大依次输出每个区间的左端点。
我们加两个辅助数组l[i],r[i]分别记录以第i个数字为除数向左最多能延伸到的位置和向右最多能延伸到的位置。如果a[i-1] % a[i]==0 ,那么l[i] = l[i-1],然后反复迭代直到a[i-1]%a[i] ≠0。先从左向右做一遍求l[i],再从右向左做一遍求r[i]。具体复杂度我没证明,但是满足(a % b == 0 &&b %c == 0 &&a %b !=0)的情况应该不会特别特别多,所以总复杂度应该是接近o(n)的。
#include<cmath>
#include<algorithm>
#include<cstring>
#include<string>
#include<set>
#include<map>
#include<time.h>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<iostream>
using namespace std;
#define LONG long long
const int INF=0x3f3f3f3f;
const int MOD=1e9+7;
const double PI=acos(-1.0);
#define clrI(x) memset(x,-1,sizeof(x))
#define clr0(x) memset(x,0,sizeof x)
#define clr1(x) memset(x,INF,sizeof x)
#define clr2(x) memset(x,-INF,sizeof x)
#define EPS 1e-10
struct Node
{
int l , r ;
int val , len ;
}node[310005];
int ans[310000];
int n;
void solve()
{
for(int i = 2 ;i <= n ;++ i)
while( (node[node[i].l -1 ].val % node[i].val == 0 )&& node[i].l > 1 )
node[i].l = node[node[i].l - 1].l ;
for(int i = n - 1; i >= 1; -- i)
while(node[node[i].r + 1].val % node[i].val == 0 && node[i].r <n)
node[i].r = node[node[i].r + 1].r;
int maxn = 0;
for(int i = 1; i<= n ;++ i)
{
node[i].len = node[i].r - node[i].l ;
maxn = max(maxn , node[i].len ) ;
}
int m = 0;
ans[0] = 0;
for(int i =1; i<= n ;++ i)
if(node[i].len == maxn &&ans[m] != node[i].l) ans[++m] = node[i].l;
printf("%d %d\n",m,maxn);
for(int i = 1; i< m ;++ i)printf("%d ",ans[i]);cout<<ans[m]<<endl;
}
int main()
{
cin>>n;
for (int i =1; i<= n ; ++i)
{
scanf("%d", &node[i].val) ;
node[i].l = i;
node[i].r = i;
}
solve();
}