Hive调优
常用参数调优
limit限制调整
一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。有一个配置属性可以开启,避免这种情况—对数据源进行抽样。
- hive.limit.optimize.enable=true — 开启对数据源进行采样的功能
- hive.limit.row.max.size — 设置最小的采样容量
- hive.limit.optimize.limit.file — 设置最大的采样样本数
缺点:有可能部分数据永远不会被处理到
JOIN优化
- 将大表放后头
Hive假定查询中最后的一个表是大表。它会将其它表缓存起来,然后扫描最后那个表。因此通常需要将小表放前面,或者标记哪张表是大表:/*streamtable(table_name) */ - 使用相同的连接键
当对3个或者更多个表进行join连接时,如果每个on子句都使用相同的连接键的话,那么只会产生一个MapReduce job。 - 尽量尽早地过滤数据
减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段。 - 尽量原子化操作
尽量避免一个SQL包含复杂逻辑,可以使用中间表来完成复杂的逻辑
本地模式
有时hive的输入数据量是非常小的。在这种情况下,为查询出发执行任务的时间消耗可能会比实际job的执行时间要多的多。对于大多数这种情况,hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间会明显被缩短
set hive.exec.mode.local.auto=true;
当一个job满足如下条件才能真正使用本地模式:
- job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
- job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
- job的reduce数必须为0或者1
可用参数hive.mapred.local.mem(默认0)控制child jvm使用的最大内存数。
并行执行
hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。不过,如果某些阶段不是互相依赖,是可以并行执行的。
set hive.exec.parallel=true --可以开启并发执行。
set hive.exec.parallel.thread.number=16 --同一个sql允许最大并行度,默认为8。
缺点:会比较耗系统资源。
strict模式
对分区表进行查询,在where子句中没有加分区过滤的话,将禁止提交任务(默认:nonstrict)
set hive.mapred.mode=strict;
注:使用严格模式可以禁止3种类型的查询:
(1)对于分区表,不加分区字段过滤条件,不能执行
(2)对于order by语句,必须使用limit语句
(3)限制笛卡尔积的查询(join的时候不使用on,而使用where的)
调整mapper和reducer个数
Map阶段优化
map执行时间:map任务启动和初始化的时间+逻辑处理的时间。
1.通常情况下,作业会通过input的目录产生一个或者多个map任务。主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);
2.举例:
a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数 b)假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数 即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
3.是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
4.是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;如何合并小文件,减少map数?
假设一个SQL任务:Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ 该任务的inputdir /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。Map总共消耗的计算资源:SLOTS_MILLIS_MAPS= 623,020 通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000; set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS=333,500 对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。大概解释一下,100000000表示100M
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
这个参数表示执行前进行小文件合并,前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块。
如何适当的增加map数?当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数, 来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
Select data_desc,
count(1),
count(distinct id),
sum(case when …),
sum(case when ...),
sum(…)
from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as
select * from a
distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量。
控制hive任务的reduce数:
1.Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
- hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
- hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务,如:
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,
因此这句有10个reduce
2.调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; --(500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; -- 这次有20个reduce
3.调整reduce个数方法二
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; --这次有15个reduce
4.reduce个数并不是越多越好;
同map一样,启动和初始化reduce也会消耗时间和资源;另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件, 那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
5.什么情况下只有一个reduce;
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:
a)没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt; 写成 select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’; 这点非常常见,希望大家尽量改写。
b)用了Order by
c)有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我们暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成。同样的,在设置reduce个数的时候也需要考虑这两个原则:
使大数据量利用合适的reduce数
使单个reduce任务处理合适的数据量
Reduce阶段优化
调整方式:
set mapred.reduce.tasks=?
set hive.exec.reducers.bytes.per.reducer = ?
一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数 = InputFileSize / bytes per reducer
JVM重用
用于避免小文件的场景或者task特别多的场景,这类场景大多数执行时间都很短,因为hive调起mapreduce任务,JVM的启动过程会造成很大的开销,尤其是job有成千上万个task任务时,JVM重用可以使得JVM实例在同一个job中重新使用N次
set mapred.job.reuse.jvm.num.tasks=10; --10为重用个数
动态分区调整
-- 动态分区属性:设置为true表示开启动态分区功能(默认为false)
set hive.exec.dynamic.partition=true;
-- 动态分区属性:设置为nonstrict,表示允许所有分区都是动态的(默认为strict) 设置为strict,表示必须保证至少有一个分区是静态的
set hive.exec.dynamic.partition.mode=strict;
-- 动态分区属性:每个mapper或reducer可以创建的最大动态分区个数
set hive.exec.max.dynamic.partitions.pernode=100;
-- 动态分区属性:一个动态分区创建语句可以创建的最大动态分区个数
hive.exec.max.dynamic.partitions=1000;
-- 动态分区属性:全局可以创建的最大文件个数
hive.exec.max.created.files=100000;
控制DataNode一次可以打开的文件个数 这个参数必须设置在DataNode的$HADOOP_HOME/conf/hdfs-site.xml文件中
<property>
<name>dfs.datanode.max.xcievers</name>
<value>8192</value>
</property>
推测执行
目的:是通过加快获取单个task的结果以及进行侦测将执行慢的TaskTracker加入到黑名单的方式来提高整体的任务执行效率
(1)修改 $HADOOP_HOME/conf/mapred-site.xml文件
<property>
<name>mapred.map.tasks.speculative.execution </name>
<value>true</value>
</property>
<property>
<name>mapred.reduce.tasks.speculative.execution </name>
<value>true</value>
</property>
(2)修改hive配置
set hive.mapred.reduce.tasks.speculative.execution=true;
数据倾斜
表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。最长时长远大于平均时长。
原因
1)、key分布不均匀
2)、业务数据本身的特性
3)、建表时考虑不周
4)、某些SQL语句本身就有数据倾斜
解决方案:参数调节
set hive.map.aggr=true
其他参数调优
-- 开启CLI提示符前打印出当前所在的数据库名
set hive.cli.print.current.db=true;
-- 让CLI打印出字段名称
set hive.cli.print.header=true;
-- 设置任务名称,方便查找监控
set mapred.job.name=P_DWA_D_IA_S_USER_PROD;
-- 决定是否可以在 Map 端进行聚合操作
set hive.map.aggr=true;
-- 有数据倾斜的时候进行负载均衡
set hive.groupby.skewindata=true;
-- 对于简单的不需要聚合的类似SELECT col from table LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据
set hive.fetch.task.conversion=more;
小文件问题
小文件是如何产生的:
-
动态分区插入数据,产生大量的小文件,从而导致map数量剧增。
-
reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的)。
-
数据源本身就包含大量的小文件。
小文件问题的影响
-
从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
-
在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。
小文件问题的解决方案
从小文件产生的途经就可以从源头上控制小文件数量,方法如下:
-
使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件
-
减少reduce的数量(可以使用参数进行控制)
-
少用动态分区,用时记得按distribute by分区
对于已有的小文件,我们可以通过以下几种方案解决:
-
使用hadoop archive命令把小文件进行归档
-
重建表,建表时减少reduce数量
-
通过参数进行调节,设置map/reduce端的相关参数,如下:
设置map输入合并小文件的相关参数:
-- 每个Map最大输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256000000;
-- 一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100000000;
-- 一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)
set mapred.min.split.size.per.rack=100000000;
-- 执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
设置map输出和reduce输出进行合并的相关参数:
-- 设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true
-- 设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true
-- 设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000
-- 当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。
set hive.merge.smallfiles.avgsize=16000000
设置如下参数取消一些限制(HIVE 0.7后没有此限制):
-- 默认值:false 描述:是否合并Reduce的输出文件,也就是在Map输出阶段做一次reduce操作,再输出
set hive.merge.mapfiles=false
-- 这个参数表示执行前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
数据的压缩与存储格式
Hive的文件存储格式
- TEXTFILE
- Hive数据表的默认格式,存储方式:行存储。
- 可以使用Gzip压缩算法,但压缩后的文件不支持split
- 在反序列化过程中,必须逐个字符判断是不是分隔符和行结束符,因此反序列化开销会比SequenceFile高几十倍。
- SEQUENCEFILE
- 压缩数据文件可以节省磁盘空间,但Hadoop中有些原生压缩文件的缺点之一就是不支持分割。支持分割的文件可以并行的有多个mapper程序处理大数据文件,大多数文件不支持可分割是因为这些文件只能从头开始读。Sequence File是可分割的文件格式,支持Hadoop的block级压缩。
- Hadoop API提供的一种二进制文件,以key-value的形式序列化到文件中。存储方式:行存储。
- sequencefile支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,RECORD是默认选项,通常BLOCK会带来较RECORD更好的压缩性能。
优势是文件和hadoop api中的MapFile是相互兼容的
- RCFILE
- 存储方式:数据按行分块,每块按列存储。结合了行存储和列存储的优点
- RCFile 保证同一行的数据位于同一节点,因此元组重构的开销很低
- 像列存储一样,RCFile 能够利用列维度的数据压缩,并且能跳过不必要的列读取
- 数据追加:RCFile不支持任意方式的数据写操作,仅提供一种追加接口,这是因为底层的 HDFS当前仅仅支持数据追加写文件尾部。
- 行组大小:行组变大有助于提高数据压缩的效率,但是可能会损害数据的读取性能,因为这样增加了 Lazy 解压性能的消耗。而且行组变大会占用更多的内存,这会影响并发执行的其他MR作业。 考虑到存储空间和查询效率两个方面,Facebook 选择 4MB 作为默认的行组大小,当然也允许用户自行选择参数进行配置。
- ORCFILE
- 存储方式:数据按行分块,每块按照列存储。
- 压缩快,快速列存取。效率比rcfile高,是rcfile的改良版本。
压缩工具的对比
Hadoop编码/解码器方式,如下表所示
压缩设置
HiveQL语句最终都将转换成为hadoop中的MapReduce job,而MapReduce job可以有对处理的数据进行压缩。
- Map阶段输出数据压缩
hive.exec.compress.intermediate:默认为false,设置true为激活中间数据压缩功能,就是MapReduce的shuffle阶段对mapper产生中间压缩,在这个阶段,优先选择一个低CPU开销:
set hive.exec.compress.intermediate=true
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec
set mapred.map.output.compression.codec=com.hadoop.compression.lzo.LzoCodec
- 最终输出结果压缩
hive.exec.compress.output:用户可以对最终生成的Hive表的数据通常也需要压缩。该参数控制这一功能的激活与禁用,设置为true来声明将结果文件进行压缩。
mapred.output.compression.codec:将hive.exec.compress.output参数设置成true后,然后选择一个合适的编解码器,如选择SnappyCodec。设置如下(两种压缩的编写方式是一样的):
set hive.exec.compress.output=true
set mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec
-- 或者
set mapred.output.compress=true
set mapred.output.compression.codec=org.apache.hadoop.io.compress.LzopCodec
四种格式的存储和压缩设置(客户端设置压缩格式)
- TEXTFile
create table if not exists textfile_table(
site string,
url string,
pv bigint,
label string
)
row format delimited
fields terminated by '\t'
stored as textfile;
-- 插入数据操作:
set hive.exec.compress.output=true; -- 输出结果压缩开启
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec; -- 压缩和解压缩编码类列表,用逗号分隔,将所用到解压和压缩码设置其中
insert overwrite table textfile_table select * from testfile_table;
- SEQUENCEFile
create table if not exists seqfile_table(
site string,
url string,
pv bigint,
label string)
row format delimited
fields terminated by '\t'
stored as sequencefile;
-- 插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
SET mapred.output.compression.type=BLOCK;
insert overwrite table seqfile_table select * from testfile_table;
- RCFILE
create table if not exists rcfile_table(
site string,
url string,
pv bigint,
label string)
row format delimited
fields terminated by '\t'
stored as rcfile;
-- 插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table rcfile_table select * from testfile_table;
- ORCFILE
create table if not exists orcfile_table(
site string,
url string,
pv bigint,
label string)
row format delimited
fields terminated by '\t'
stored as orc;
-- 插入数据操作:
set hive.exec.compress.output=true;
set mapred.output.compress=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;
insert overwrite table orcfile_table select * from testfile_table;
总结:
-
TextFile默认格式,加载速度最快,可以采用Gzip进行压缩,压缩后的文件无法split,无法并行处理了。
-
SequenceFile压缩率最低,查询速度一般,将数据存放到sequenceFile格式的hive表中,这时数据就会压缩存储。三种压缩格式NONE,RECORD,BLOCK。是可分割的文件格式。
-
RCfile压缩率最高,查询速度最快,数据加载最慢。
-
相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应。数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势。
-
在hive中使用压缩需要灵活的方式,如果是数据源的话,采用RCFile+bz或RCFile+gz的方式,这样可以很大程度上节省磁盘空间;而在计算的过程中,为了不影响执行的速度,可以浪费一点磁盘空间,建议采用RCFile+snappy的方式,这样可以整体提升hive的执行速度。至于lzo的方式,也可以在计算过程中使用,只不过综合考虑(速度和压缩比)还是考虑snappy适宜。
结论,一般选择orcfile/parquet + snappy 方式
合理利用分区分桶
分区是将表的数据在物理上分成不同的文件夹,以便于在查询时可以精准指定所要读取的分区目录,从来降低读取的数据量
分桶是将表数据按指定列的hash散列后分在了不同的文件中,将来查询时,hive可以根据分桶结构,快速定位到一行数据所在的分桶文件,从来提高读取效率
SQL优化
where条件优化
优化前(关系数据库不用考虑会自动优化):
select m.cid,u.id from order m join customer u on( m.cid =u.id )where m.dt='20200808';
优化后(where条件在map端执行而不是在reduce端执行):
select m.cid,u.id from (select * from order where dt='20180818') m join customer u on( m.cid =u.id);
union优化
尽量不要使用union (union 去掉重复的记录)而是使用 union all 然后在用group by 去重
count distinct优化
不要使用count (distinct cloumn) ,使用子查询
select count(1) from (select id from tablename group by id) tmp;
用in 来代替join
如果需要根据一个表的字段来约束另为一个表,尽量用in来代替join . in 要比join 快
select id,name from tb1 a join tb2 b on(a.id = b.id);
select id,name from tb1 where id in(select id from tb2);
优化子查询
消灭子查询内的 group by 、 COUNT(DISTINCT),MAX,MIN。可以减少job的数量.
join 优化
Common/shuffle/Reduce JOIN 连接发生的阶段,发生在reduce 阶段, 适用于大表 连接 大表(默认的方式)
Map join :连接发生在map阶段 , 适用于小表 连接 大表
大表的数据从文件中读取
小表的数据存放在内存中(hive中已经自动进行了优化,自动判断小表,然后进行缓存)
set hive.auto.convert.join=true;
SMB join
Sort -Merge -Bucket Join 对大表连接大表的优化,用桶表的概念来进行优化。在一个桶内发生笛卡尔积连接(需要是两个桶表进行join)
set hive.auto.convert.sortmerge.join=true;
set hive.optimize.bucketmapjoin = true;
set hive.optimize.bucketmapjoin.sortedmerge = true;
set hive.auto.convert.sortmerge.join.noconditionaltask=true;
数据倾斜
表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
原因:某个reduce的数据输入量远远大于其他reduce数据的输入量
sql本身导致的数据倾斜
- group by
如果是在group by中产生了数据倾斜,是否可以讲group by的维度变得更细,如果没法变得更细,就可以在原分组key上添加随机数后分组聚合一次,然后对结果去掉随机数后再分组聚合
在join时,有大量为null的join key,则可以将null转成随机值,避免聚集 - count(distinct)
情形:某特殊值过多
后果:处理此特殊值的 reduce 耗时;只有一个 reduce 任务
解决方式:count distinct 时,将值为空的情况单独处理,比如可以直接过滤空值的行,
在最后结果中加 1。如果还有其他计算,需要进行 group by,可以先将值为空的记录单独处理,再和其他计算结果进行 union。 - 不同数据类型关联产生数据倾斜
情形:比如用户表中 user_id 字段为 int,log 表中 user_id 字段既有 string 类型也有 int 类型。当按照 user_id 进行两个表的 Join 操作时。
后果:处理此特殊值的 reduce 耗时;只有一个 reduce 任务
默认的 Hash 操作会按 int 型的 id 来进行分配,这样会导致所有 string 类型 id 的记录都分配
到一个 Reducer 中。
解决方式:把数字类型转换成字符串类型
select * from users a
left outer join logs b
on a.usr_id = cast(b.user_id as string) - mapjoin
业务数据本身的特性(存在热点key)
join的每路输入都比较大,且长尾是热点值导致的,可以对热点值和非热点值分别进行处理,再合并数据
key本身分布不均
可以在key上加随机数,或者增加reduceTask数量
开启数据倾斜时负载均衡
set hive.groupby.skewindata=true;
思想:就是先随机分发并处理,再按照 key group by 来分发处理。
操作:当选项设定为 true,生成的查询计划会有两个 MRJob。
第一个 MRJob 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 GroupBy Key 有可能被分发到不同的Reduce 中,从而达到负载均衡的目的;
第二个 MRJob 再根据预处理的数据结果按照 GroupBy Key 分布到 Reduce 中(这个过程可以保证相同的原始 GroupBy Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。
控制空值分布
将为空的 key 转变为字符串加随机数或纯随机数,将因空值而造成倾斜的数据分不到多个 Reducer。
注:对于异常值如果不需要的话,最好是提前在 where 条件里过滤掉,这样可以使计算量大大减少
查看sql的执行计划
学会查看sql的执行计划,优化业务逻辑 ,减少job的数据量。对调优也非常重要
explain sql