Hive系列(六)调优

常用参数调优

limit限制调整

一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。有一个配置属性可以开启,避免这种情况—对数据源进行抽样。

  • hive.limit.optimize.enable=true — 开启对数据源进行采样的功能
  • hive.limit.row.max.size — 设置最小的采样容量
  • hive.limit.optimize.limit.file — 设置最大的采样样本数

缺点:有可能部分数据永远不会被处理到

JOIN优化

  1. 将大表放后头
    Hive假定查询中最后的一个表是大表。它会将其它表缓存起来,然后扫描最后那个表。因此通常需要将小表放前面,或者标记哪张表是大表:/*streamtable(table_name) */
  2. 使用相同的连接键
    当对3个或者更多个表进行join连接时,如果每个on子句都使用相同的连接键的话,那么只会产生一个MapReduce job。
  3. 尽量尽早地过滤数据
    减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段。
  4. 尽量原子化操作
    尽量避免一个SQL包含复杂逻辑,可以使用中间表来完成复杂的逻辑

本地模式

有时hive的输入数据量是非常小的。在这种情况下,为查询出发执行任务的时间消耗可能会比实际job的执行时间要多的多。对于大多数这种情况,hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间会明显被缩短

set hive.exec.mode.local.auto=true;

当一个job满足如下条件才能真正使用本地模式:

  • job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
  • job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
  • job的reduce数必须为0或者1

可用参数hive.mapred.local.mem(默认0)控制child jvm使用的最大内存数。

并行执行

hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。不过,如果某些阶段不是互相依赖,是可以并行执行的。

set hive.exec.parallel=true  --可以开启并发执行。
set hive.exec.parallel.thread.number=16 --同一个sql允许最大并行度,默认为8。

缺点:会比较耗系统资源。

strict模式

对分区表进行查询,在where子句中没有加分区过滤的话,将禁止提交任务(默认:nonstrict)

set hive.mapred.mode=strict;

注:使用严格模式可以禁止3种类型的查询:
(1)对于分区表,不加分区字段过滤条件,不能执行
(2)对于order by语句,必须使用limit语句
(3)限制笛卡尔积的查询(join的时候不使用on,而使用where的)

调整mapper和reducer个数

Map阶段优化

map执行时间:map任务启动和初始化的时间+逻辑处理的时间。

1.通常情况下,作业会通过input的目录产生一个或者多个map任务。主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);

2.举例:

a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数 b)假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数 即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。

3.是不是map数越多越好?

答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。

4.是不是保证每个map处理接近128m的文件块,就高枕无忧了?

答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;如何合并小文件,减少map数?

假设一个SQL任务:Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ 该任务的inputdir /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。Map总共消耗的计算资源:SLOTS_MILLIS_MAPS= 623,020 通过以下方法来在map执行前合并小文件,减少map数:

set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000; set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS=333,500 对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。大概解释一下,100000000表示100M

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

这个参数表示执行前进行小文件合并,前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块。

如何适当的增加map数?当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数, 来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:

 Select data_desc,
  count(1),
  count(distinct id),
  sum(case when),
  sum(case when ...),
  sum()
  from a group by data_desc

如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,这样就可以用多个map任务去完成。

set mapred.reduce.tasks=10;
create table a_1 as 
select * from a 
distribute by rand(123);

这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。

看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量。

控制hive任务的reduce数:

1.Hive自己如何确定reduce数:

reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:

  • hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
  • hive.exec.reducers.max(每个任务最大的reduce数,默认为999)

计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务,如:

select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;

/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,

因此这句有10个reduce

2.调整reduce个数方法一:

调整hive.exec.reducers.bytes.per.reducer参数的值;

set hive.exec.reducers.bytes.per.reducer=500000000; --(500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;  -- 这次有20个reduce

3.调整reduce个数方法二

set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; --这次有15个reduce

4.reduce个数并不是越多越好;

同map一样,启动和初始化reduce也会消耗时间和资源;另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件, 那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;

5.什么情况下只有一个reduce;

很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:

a)没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt; 写成 select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’; 这点非常常见,希望大家尽量改写。

b)用了Order by

c)有笛卡尔积

通常这些情况下,除了找办法来变通和避免,我们暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成。同样的,在设置reduce个数的时候也需要考虑这两个原则:

使大数据量利用合适的reduce数

使单个reduce任务处理合适的数据量

Reduce阶段优化

调整方式:

set mapred.reduce.tasks=?
set hive.exec.reducers.bytes.per.reducer = ?

一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数 = InputFileSize / bytes per reducer

JVM重用

用于避免小文件的场景或者task特别多的场景,这类场景大多数执行时间都很短,因为hive调起mapreduce任务,JVM的启动过程会造成很大的开销,尤其是job有成千上万个task任务时,JVM重用可以使得JVM实例在同一个job中重新使用N次

set mapred.job.reuse.jvm.num.tasks=10; --10为重用个数

动态分区调整

-- 动态分区属性:设置为true表示开启动态分区功能(默认为false)
set hive.exec.dynamic.partition=true;
-- 动态分区属性:设置为nonstrict,表示允许所有分区都是动态的(默认为strict) 设置为strict,表示必须保证至少有一个分区是静态的
set hive.exec.dynamic.partition.mode=strict;
-- 动态分区属性:每个mapper或reducer可以创建的最大动态分区个数
set hive.exec.max.dynamic.partitions.pernode=100;
-- 动态分区属性:一个动态分区创建语句可以创建的最大动态分区个数
hive.exec.max.dynamic.partitions=1000;
-- 动态分区属性:全局可以创建的最大文件个数
hive.exec.max.created.files=100000;

控制DataNode一次可以打开的文件个数 这个参数必须设置在DataNode的$HADOOP_HOME/conf/hdfs-site.xml文件中

<property>
    <name>dfs.datanode.max.xcievers</name>
    <value>8192</value>
</property>

推测执行

目的:是通过加快获取单个task的结果以及进行侦测将执行慢的TaskTracker加入到黑名单的方式来提高整体的任务执行效率

(1)修改 $HADOOP_HOME/conf/mapred-site.xml文件

 <property>
     <name>mapred.map.tasks.speculative.execution </name>
     <value>true</value>
</property>
 <property>
     <name>mapred.reduce.tasks.speculative.execution </name>
     <value>true</value>
</property>

(2)修改hive配置

set hive.mapred.reduce.tasks.speculative.execution=true;

数据倾斜

表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。最长时长远大于平均时长。

原因

1)、key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

4)、某些SQL语句本身就有数据倾斜

在这里插入图片描述
解决方案:参数调节

set hive.map.aggr=true

其他参数调优

-- 开启CLI提示符前打印出当前所在的数据库名
set hive.cli.print.current.db=true;

-- 让CLI打印出字段名称
set hive.cli.print.header=true;

-- 设置任务名称,方便查找监控
set mapred.job.name=P_DWA_D_IA_S_USER_PROD;

-- 决定是否可以在 Map 端进行聚合操作
set hive.map.aggr=true;

-- 有数据倾斜的时候进行负载均衡
set hive.groupby.skewindata=true;

-- 对于简单的不需要聚合的类似SELECT col from table LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据
set hive.fetch.task.conversion=more;

小文件问题

小文件是如何产生的:

  1. 动态分区插入数据,产生大量的小文件,从而导致map数量剧增。

  2. reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的)。

  3. 数据源本身就包含大量的小文件。

小文件问题的影响

  1. 从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。

  2. 在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。

小文件问题的解决方案
从小文件产生的途经就可以从源头上控制小文件数量,方法如下:

  1. 使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件

  2. 减少reduce的数量(可以使用参数进行控制)

  3. 少用动态分区,用时记得按distribute by分区

对于已有的小文件,我们可以通过以下几种方案解决:

  1. 使用hadoop archive命令把小文件进行归档

  2. 重建表,建表时减少reduce数量

  3. 通过参数进行调节,设置map/reduce端的相关参数,如下:

设置map输入合并小文件的相关参数:

-- 每个Map最大输入大小(这个值决定了合并后文件的数量)  
set mapred.max.split.size=256000000;   
 
-- 一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)  
set mapred.min.split.size.per.node=100000000; 
 
-- 一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)    
set mapred.min.split.size.per.rack=100000000;  

-- 执行Map前进行小文件合并  
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

设置map输出和reduce输出进行合并的相关参数:

-- 设置map端输出进行合并,默认为true  
set hive.merge.mapfiles = true  

-- 设置reduce端输出进行合并,默认为false  
set hive.merge.mapredfiles = true
  
-- 设置合并文件的大小  
set hive.merge.size.per.task = 256*1000*1000  

-- 当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。
set hive.merge.smallfiles.avgsize=16000000

设置如下参数取消一些限制(HIVE 0.7后没有此限制):

-- 默认值:false 描述:是否合并Reduce的输出文件,也就是在Map输出阶段做一次reduce操作,再输出
set hive.merge.mapfiles=false

-- 这个参数表示执行前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

数据的压缩与存储格式

Hive的文件存储格式

  1. TEXTFILE
  • Hive数据表的默认格式,存储方式:行存储。
  • 可以使用Gzip压缩算法,但压缩后的文件不支持split
  • 在反序列化过程中,必须逐个字符判断是不是分隔符和行结束符,因此反序列化开销会比SequenceFile高几十倍。
  1. SEQUENCEFILE
  • 压缩数据文件可以节省磁盘空间,但Hadoop中有些原生压缩文件的缺点之一就是不支持分割。支持分割的文件可以并行的有多个mapper程序处理大数据文件,大多数文件不支持可分割是因为这些文件只能从头开始读。Sequence File是可分割的文件格式,支持Hadoop的block级压缩。
  • Hadoop API提供的一种二进制文件,以key-value的形式序列化到文件中。存储方式:行存储。
  • sequencefile支持三种压缩选择:NONE,RECORD,BLOCK。Record压缩率低,RECORD是默认选项,通常BLOCK会带来较RECORD更好的压缩性能。
    优势是文件和hadoop api中的MapFile是相互兼容的
  1. RCFILE
  • 存储方式:数据按行分块,每块按列存储。结合了行存储和列存储的优点
  • RCFile 保证同一行的数据位于同一节点,因此元组重构的开销很低
  • 像列存储一样,RCFile 能够利用列维度的数据压缩,并且能跳过不必要的列读取
  • 数据追加:RCFile不支持任意方式的数据写操作,仅提供一种追加接口,这是因为底层的 HDFS当前仅仅支持数据追加写文件尾部。
  • 行组大小:行组变大有助于提高数据压缩的效率,但是可能会损害数据的读取性能,因为这样增加了 Lazy 解压性能的消耗。而且行组变大会占用更多的内存,这会影响并发执行的其他MR作业。 考虑到存储空间和查询效率两个方面,Facebook 选择 4MB 作为默认的行组大小,当然也允许用户自行选择参数进行配置。
  1. ORCFILE
  • 存储方式:数据按行分块,每块按照列存储。
  • 压缩快,快速列存取。效率比rcfile高,是rcfile的改良版本。

压缩工具的对比

在这里插入图片描述
Hadoop编码/解码器方式,如下表所示
在这里插入图片描述

压缩设置

HiveQL语句最终都将转换成为hadoop中的MapReduce job,而MapReduce job可以有对处理的数据进行压缩。

  1. Map阶段输出数据压缩
    hive.exec.compress.intermediate:默认为false,设置true为激活中间数据压缩功能,就是MapReduce的shuffle阶段对mapper产生中间压缩,在这个阶段,优先选择一个低CPU开销:
set hive.exec.compress.intermediate=true
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec
set mapred.map.output.compression.codec=com.hadoop.compression.lzo.LzoCodec
  1. 最终输出结果压缩
    hive.exec.compress.output:用户可以对最终生成的Hive表的数据通常也需要压缩。该参数控制这一功能的激活与禁用,设置为true来声明将结果文件进行压缩。

mapred.output.compression.codec:将hive.exec.compress.output参数设置成true后,然后选择一个合适的编解码器,如选择SnappyCodec。设置如下(两种压缩的编写方式是一样的):

set hive.exec.compress.output=true 
set mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec
-- 或者
set mapred.output.compress=true
set mapred.output.compression.codec=org.apache.hadoop.io.compress.LzopCodec

四种格式的存储和压缩设置(客户端设置压缩格式)

  1. TEXTFile
create table if not exists textfile_table(
site string,
url string,
pv bigint,
label string
)
row format delimited
fields terminated by '\t'
stored as textfile;
-- 插入数据操作:
set hive.exec.compress.output=true; -- 输出结果压缩开启  
set mapred.output.compress=true;  
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;  
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;  -- 压缩和解压缩编码类列表,用逗号分隔,将所用到解压和压缩码设置其中
insert overwrite table textfile_table select * from testfile_table; 
  1. SEQUENCEFile
create table if not exists seqfile_table(
site string,
url  string,
pv   bigint,
label string)
row format delimited
fields terminated by '\t'
stored as sequencefile;
-- 插入数据操作:
set hive.exec.compress.output=true;  
set mapred.output.compress=true;  
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;  
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;  
SET mapred.output.compression.type=BLOCK;
insert overwrite table seqfile_table select * from testfile_table; 
  1. RCFILE
create table if not exists rcfile_table(
site string,
url  string,
pv   bigint,
label string)
row format delimited
fields terminated by '\t'
stored as rcfile;
-- 插入数据操作:
set hive.exec.compress.output=true;  
set mapred.output.compress=true;  
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;  
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;  
insert overwrite table rcfile_table select * from testfile_table;
  1. ORCFILE
create table if not exists orcfile_table(
site string,
url  string,
pv   bigint,
label string)
row format delimited
fields terminated by '\t'
stored as orc;
-- 插入数据操作:
set hive.exec.compress.output=true;  
set mapred.output.compress=true;  
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;  
set io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec;  
insert overwrite table orcfile_table select * from testfile_table;

总结:

  1. TextFile默认格式,加载速度最快,可以采用Gzip进行压缩,压缩后的文件无法split,无法并行处理了。

  2. SequenceFile压缩率最低,查询速度一般,将数据存放到sequenceFile格式的hive表中,这时数据就会压缩存储。三种压缩格式NONE,RECORD,BLOCK。是可分割的文件格式。

  3. RCfile压缩率最高,查询速度最快,数据加载最慢。

  4. 相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应。数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势。

  5. 在hive中使用压缩需要灵活的方式,如果是数据源的话,采用RCFile+bz或RCFile+gz的方式,这样可以很大程度上节省磁盘空间;而在计算的过程中,为了不影响执行的速度,可以浪费一点磁盘空间,建议采用RCFile+snappy的方式,这样可以整体提升hive的执行速度。至于lzo的方式,也可以在计算过程中使用,只不过综合考虑(速度和压缩比)还是考虑snappy适宜。

结论,一般选择orcfile/parquet + snappy 方式

合理利用分区分桶

分区是将表的数据在物理上分成不同的文件夹,以便于在查询时可以精准指定所要读取的分区目录,从来降低读取的数据量
分桶是将表数据按指定列的hash散列后分在了不同的文件中,将来查询时,hive可以根据分桶结构,快速定位到一行数据所在的分桶文件,从来提高读取效率

SQL优化

where条件优化

优化前(关系数据库不用考虑会自动优化):

select m.cid,u.id from order m join customer u on( m.cid =u.id )where m.dt='20200808';

优化后(where条件在map端执行而不是在reduce端执行):

select m.cid,u.id fromselect * from order where dt='20180818') m join customer u on( m.cid =u.id);

union优化

尽量不要使用union (union 去掉重复的记录)而是使用 union all 然后在用group by 去重

count distinct优化

不要使用count (distinct cloumn) ,使用子查询

select count(1) from (select id from tablename group by id) tmp;

用in 来代替join

如果需要根据一个表的字段来约束另为一个表,尽量用in来代替join . in 要比join 快

select id,name from tb1  a join tb2 b on(a.id = b.id);
 
select id,name from tb1 where id in(select id from tb2);

优化子查询

消灭子查询内的 group by 、 COUNT(DISTINCT),MAX,MIN。可以减少job的数量.

join 优化

Common/shuffle/Reduce JOIN 连接发生的阶段,发生在reduce 阶段, 适用于大表 连接 大表(默认的方式)
Map join :连接发生在map阶段 , 适用于小表 连接 大表
大表的数据从文件中读取
小表的数据存放在内存中(hive中已经自动进行了优化,自动判断小表,然后进行缓存)

set hive.auto.convert.join=true;

SMB join
Sort -Merge -Bucket Join 对大表连接大表的优化,用桶表的概念来进行优化。在一个桶内发生笛卡尔积连接(需要是两个桶表进行join)

set hive.auto.convert.sortmerge.join=true;  
set hive.optimize.bucketmapjoin = true;  
set hive.optimize.bucketmapjoin.sortedmerge = true;  
set hive.auto.convert.sortmerge.join.noconditionaltask=true;

数据倾斜

表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
原因:某个reduce的数据输入量远远大于其他reduce数据的输入量

sql本身导致的数据倾斜

  1. group by
    如果是在group by中产生了数据倾斜,是否可以讲group by的维度变得更细,如果没法变得更细,就可以在原分组key上添加随机数后分组聚合一次,然后对结果去掉随机数后再分组聚合
    在join时,有大量为null的join key,则可以将null转成随机值,避免聚集
  2. count(distinct)
    情形:某特殊值过多
    后果:处理此特殊值的 reduce 耗时;只有一个 reduce 任务
    解决方式:count distinct 时,将值为空的情况单独处理,比如可以直接过滤空值的行,
    在最后结果中加 1。如果还有其他计算,需要进行 group by,可以先将值为空的记录单独处理,再和其他计算结果进行 union。
  3. 不同数据类型关联产生数据倾斜
    情形:比如用户表中 user_id 字段为 int,log 表中 user_id 字段既有 string 类型也有 int 类型。当按照 user_id 进行两个表的 Join 操作时。
    后果:处理此特殊值的 reduce 耗时;只有一个 reduce 任务
    默认的 Hash 操作会按 int 型的 id 来进行分配,这样会导致所有 string 类型 id 的记录都分配
    到一个 Reducer 中。
    解决方式:把数字类型转换成字符串类型
    select * from users a
    left outer join logs b
    on a.usr_id = cast(b.user_id as string)
  4. mapjoin

业务数据本身的特性(存在热点key)

join的每路输入都比较大,且长尾是热点值导致的,可以对热点值和非热点值分别进行处理,再合并数据

key本身分布不均

可以在key上加随机数,或者增加reduceTask数量

开启数据倾斜时负载均衡
set hive.groupby.skewindata=true;
思想:就是先随机分发并处理,再按照 key group by 来分发处理。
操作:当选项设定为 true,生成的查询计划会有两个 MRJob。
第一个 MRJob 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 GroupBy Key 有可能被分发到不同的Reduce 中,从而达到负载均衡的目的;

第二个 MRJob 再根据预处理的数据结果按照 GroupBy Key 分布到 Reduce 中(这个过程可以保证相同的原始 GroupBy Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

控制空值分布

将为空的 key 转变为字符串加随机数或纯随机数,将因空值而造成倾斜的数据分不到多个 Reducer。
注:对于异常值如果不需要的话,最好是提前在 where 条件里过滤掉,这样可以使计算量大大减少

查看sql的执行计划

学会查看sql的执行计划,优化业务逻辑 ,减少job的数据量。对调优也非常重要

explain sql 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值