Visual Reinforcement Learning with Imagined Goals

这篇文章的核心使用Variational Autoencoder配合高斯分布将图像转换到另一个空间下。使用编码器encoder的输出结果作为状态和目标。这种编码方式优于欧式空间的度量方法,称之为latent space。使用Variational Autoencoder的好处如下: Provid...

2018-08-18 11:41:51

阅读数 320

评论数 0

Q Learning vs Policy Gradients

Policy Gradients is generally believed to be able to apply to a wider range of problems. For instance, on occasions when the Q function (i.e. reward ...

2018-08-17 22:38:25

阅读数 232

评论数 0

A Distributional Perspective on Reinforcement Learning

传统的强化学习算法例如Q-learning算法学习的是state-action值函数,而这篇文章的核心是学习state-action的概率分布。 具体各简单的例子:例如我们在上班是需要经过6站地铁,每站地铁平均需要5分钟,则上上班需要30分钟。如果每个星期(5天),地铁都会出毛病,则就需要耽误耽...

2018-08-16 23:25:22

阅读数 463

评论数 0

An End-to-End Approach to Natural Language Object Retrieval via Context-Aware Deep Reinforcement Lea

An End-to-End Approach to Natural Language Object Retrieval                         via Context-Aware Deep Reinforcement Learning 这篇文章的...

2017-11-28 19:43:12

阅读数 447

评论数 0

Joint Sequence Learning and Cross-Modality Convolution for 3D Biomedical Segmentation笔记

Joint Sequence Learning and Cross-Modality                                                           Convolution for 3D Biomedical Segmentation笔记  ...

2017-11-10 16:48:53

阅读数 567

评论数 0

Deep Deterministic Policy Gradient(DDPG)

Deep Deterministic Policy Gradient  有不对之处,还请告知

2017-10-07 10:32:15

阅读数 2296

评论数 0

Actor Critic算法源码分析

Actor Critic算法源码分析     Actor-Critic算法主要是为了解决Policy Gradient算法中仅能在一个回合完成之后才能更新参数。简单的说是在玩游戏结束了之后,才能对参数进行更新。Policy Gradient算法从一个游戏的整体回合来看,加大好动作的权重,减小不好...

2017-09-30 10:15:53

阅读数 2038

评论数 0

Caffe源码分析:solver,Net,layer的依赖关系

Caffe源码分析:solver,Net,layer的依赖关系     在caffe的执行过程过,核心的调用时Layer的forward和backward函数,今天在这里详细的分析一下caffe中,solver到底是如何执行Layer的forward函数的。首先在caffe中最先创建的是一个s...

2017-09-11 14:31:10

阅读数 468

评论数 0

tensorflow 权重初始化

如果激活函数使用sigmoid和tanh,怎最好使用xavir tf.contrib.layers.xavier_initializer_conv2d 如果使用relu,则最好使用he initial tf.contrib.layers.variance_scaling_...

2017-08-14 19:35:01

阅读数 12702

评论数 0

tensorflow 使用正则化

Tensorflow 使用正则化T import tensorflow.contrib.layers as layers def easier_network(x, reg): """ A network based on tf.contrib.learn...

2017-08-09 13:13:05

阅读数 4925

评论数 0

tensorflow使用不同的学习率

tensorflow使用不同的学习率 var_list1 = [variables from first 5 layers] var_list2 = [the rest of variables] train_op1 = GradientDescentOptimizer(0.00...

2017-08-09 13:08:38

阅读数 3484

评论数 1

Policy Gradient

使用策略网络玩游戏 # hyperparameters image_size = 80 D = image_size * image_size H = 200 batch_size = 10 learning_rate = 1e-4 gamma = 0.99 decay_rate = 0...

2017-08-06 15:39:15

阅读数 525

评论数 0

使用RNN模拟CNN中每个卷积层的关系

使用RNN模拟CNN中每个卷积层的关系 import tensorflow as tf from tensorflow.python.ops import rnn,rnn_cell import pandas as pd import numpy as np from sklearn.m...

2017-07-09 19:01:58

阅读数 766

评论数 1

CNN_LSTM

使用LSTM代替CNN中的全连接层 import tensorflow as tf import pandas as pd import numpy as np from sklearn.metrics import confusion_matrix from tensorflo...

2017-07-09 19:00:08

阅读数 4201

评论数 6

Visual Saliency Prediction with Generative Adversarial Networks

Visual Saliency Prediction with Generative Adversarial Networks

2017-01-19 19:52:33

阅读数 639

评论数 0

tensorflow GTX1070 安装

tensorflow GTX1070 安装      由于在安装caffe之前,已经部署了cuda8.0版本,我们在这里安装很简单。     1)下载安装包tensorflow_gpu-0.12.0-cp27-none-linux_x86_64.whl     2)pip install ...

2016-12-31 15:47:57

阅读数 1116

评论数 0

Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge代码

Show and Tell: Lessons learned from the 2015 MSCOCO                                          Image Captioning Challenge代码           Image caption任...

2016-12-31 15:19:36

阅读数 2656

评论数 0

Caffe:LSTM使用

Caffe LSTM使用 name: "BasicLstm" layer { name: "data" type: "HDF5Data" top: "data" //输入数据 top: "c...

2016-12-27 13:46:47

阅读数 8488

评论数 9

caffe:LSTM源码分析

caffe:LSTM源码分析

2016-12-27 12:13:13

阅读数 3784

评论数 2

caffe源码学习:softmaxWithLoss前向计算

caffe源码学习:softmaxWithLoss      在caffe中softmaxwithLoss是由两部分组成,softmax+Loss组成,其实主要就是为了caffe框架的可扩展性。   表达式(1)是softmax计算表达式,(2)是sfotmaxLoss的计算损失表达。在caf...

2016-08-04 09:44:05

阅读数 13506

评论数 7

提示
确定要删除当前文章?
取消 删除
关闭
关闭