生产者消费者模型当中有两大类重要的角色,一个是生产者(负责造数据的任务),另一个是消费者(接收造出来的数据进行进一步的操作)。
什么是生产者消费者模型?
在软件开发的过程中,经常碰到这样的场景:
某些模块负责生产数据,这些数据由其他模块来负责处理(此处的模块可能是:函数、线程、进程等)。产生数据的模块称为生产者,而处理数据的模块称为消费者。在生产者与消费者之间的缓冲区称之为仓库。生产者负责往仓库运输商品,而消费者负责从仓库里取出商品,这就构成了生产者消费者模式。
生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据 之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞 队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。 这就像,在餐厅,厨师做好菜,不需要直接和客户交流,而是交给前台,而客户去饭菜也不 需要不找厨师,直接去前台领取即可。
为什么要使用生产者消费者模型?
在并发编程中,如果生产者处理速度很快,而消费者处理速度比较慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个等待的问题,就引入了生产者与消费者模型。让它们之间可以不停的生产和消费。
实现生产者消费者模型三要素:
1、生产者
2、消费者
3、队列(或其他的容哭器,但队列不用考虑锁的问题)
什么时候使用生产者消费者模型?
程序中出现明显的两类任务,一类任务是负责生产,另外一类任务是负责处理生产的数据的(如爬虫)
生产者消费者模式的优点
·解耦
假设生产者和消费者分别是两个线程。如果让生产者直接调用消费者的某个方法,那么生产者对于消费者就会产生依赖(也就是耦合)。如果未来消费者的代码发生变化,可能会影响到生产者的代码。而如果两者都依赖于某个缓冲区,两者之间不直接依赖,耦合也就相应降低了。
举个例子,我们去邮局投递信件,如果不使用邮箱(也就是缓冲区),你必须得把信直接交给邮递员。有同学会说,直接给邮递员不是挺简单的嘛?其实不简单,你必须 得认识谁是邮递员,才能把信给他。这就产生了你和邮递员之间的依赖(相当于生产者和消费者的强耦合)。万一哪天邮递员 换人了,你还要重新认识一下(相当于消费者变化导致修改生产者代码)。而邮箱相对来说比较固定,你依赖它的成本就比较低(相当于和缓冲区之间的弱耦合)。
·并发
由于生产者与消费者是两个独立的并发体,他们之间是用缓冲区通信的,生产者只需要往缓冲区里丢数据,就可以继续生产下一个数据,而消费者只需要从缓冲区拿数据即可,这样就不会因为彼此的处理速度而发生阻塞。
继续上面的例子,如果我们不使用邮箱,就得在邮局等邮递员,直到他回来,把信件交给他,这期间我们啥事儿都不能干(也就是生产者阻塞)。或者邮递员得挨家挨户问,谁要寄信(相当于消费者轮询)。
·支持忙闲不均
当生产者制造数据快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中,慢慢处理掉。而不至于因为消费者的性能造成数据丢失或影响生产者生产。
我们再拿寄信的例子,假设邮递员一次只能带走1000封信,万一碰上情人节(或是圣诞节)送贺卡,需要寄出去的信超过了1000封,这时候邮箱这个缓冲区就派上用场了。邮递员把来不及带走的信暂存在邮箱中,等下次过来时再拿走。
举个栗子
"""
@Time :2020/2/13 15:32
@Coding :UTF-8
@Auth :Bing.
@IDE :PyCharm
@File :17.生产者和消费者.py
@Motto:Move On
"""
from queue import Queue
from threading import Thread
import time
# 创建队列
q=Queue(10)
def producer(name):
"""生产者"""
count=1 # 给生产的包子计数
while True:
q.join() # 等待task_done()发现号
q.put(count)
q.put(count)
print("%s正在生产第%d个包子"%(name,count))
count+=1
time.sleep(2)
def customer(name):
"""消费者"""
count =1
while True:
bao_zi=q.get()
print("消费者%s正在吃第%d个包子"%(name,bao_zi))
count+=1
q.task_done() # 取完后发送信号
time.sleep(1)
if __name__ == '__main__':
t1=Thread(target=producer,args=("刘大厨",))
t2=Thread(target=customer,args=("翠花",))
t1.start()
t2.start()