链接:http://hi.baidu.com/bin183/blog/item/45c37950ece4475f1138c273.html
有固定根的最小树形图求法O(VE):
首先消除自环,显然自环不在最小树形图中。然后判定是否存在最小树形图,以根为起点DFS一遍即可。
之后进行以下步骤。
设cost为最小树形图总权值。
0.置cost=0。
1.求最短弧集合Ao (一条弧就是一条有向边)
除源点外,为所有其他节点Vi,找到一条以Vi为终点的边,把它加入到集合Ao中。
(加边的方法:所有点到Vi的边中权值最小的边即为该加入的边,记prev[vi]为该边的起点,mincost[vi]为该边的权值)
2.检查Ao中的边是否会形成有向圈,有则到步骤3,无则到步骤4。
(判断方法:利用prev数组,枚举为检查过的点作为搜索的起点,做类似DFS的操作)
3.将有向环缩成一个点。
假设环中的点有(Vk1,Vk2,… ,Vki)总共i个,用缩成的点叫Vk替代,则在压缩后的图中,其他所有不在环中点v到Vk的距离定义如下:
gh[v][Vk]=min { gh[v][Vkj]-mincost[Vkj] } (1<=j<=i)而Vk到v的距离为
gh[Vk][v]=min { gh[Vkj][v] } (1<=j<=i)
同时注意更新prev[v]的值,即if(prev[v]==Vkj) prev[v]=Vk
另外cost=cost+mincost[Vkj] (1<=j<=i)
到步骤1.
4.cost加上Ao的权值和即为最小树形图总权值。
如要输出最小树形图较烦,没实现过。
找环O(V),收缩O(E),总复杂度O(VE)。
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#define INF 2000000000
#define MAXN 105
#define MAXM 1005
#define eps 1e-4
using namespace std;
typedef double type;
struct Point
{
double x, y;
}p[MAXN];
struct node
{
int u, v;
type w;
}edge[MAXN * MAXN];
int pre[MAXN], id[MAXN], vis[MAXN], n, m;
type in[MAXN];
double dis(Point a, Point b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
type Directed_MST(int root, int V, int E)
{
type ret = 0;
while(true)
{
//1.找最小入边
for(int i = 0; i < V; i++)
in[i] = INF;
for(int i = 0; i < E; i++)
{
int u = edge[i].u;
int v = edge[i].v;
if(edge[i].w < in[v] && u != v)
{pre[v] = u; in[v] = edge[i].w;}
}
for(int i = 0; i < V; i++)
{
if(i == root) continue;
if(in[i] == INF) return -1;//除了根以外有点没有入边,则根无法到达它
}
//2.找环
int cnt = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0;
for(int i = 0; i < V; i++) //标记每个环
{
ret += in[i];
int v = i;
while(vis[v] != i && id[v] == -1 && v != root) //每个点寻找其前序点,要么最终寻找至根部,要么找到一个环
{
vis[v] = i;
v = pre[v];
}
if(v != root && id[v] == -1)//缩点
{
for(int u = pre[v]; u != v; u = pre[u])
id[u] = cnt;
id[v] = cnt++;
}
}
if(cnt == 0) break; //无环 则break
for(int i = 0; i < V; i++)
if(id[i] == -1) id[i] = cnt++;
//3.建立新图
for(int i = 0; i < E; i++)
{
int u = edge[i].u;
int v = edge[i].v;
edge[i].u = id[u];
edge[i].v = id[v];
if(id[u] != id[v]) edge[i].w -= in[v];
}
V = cnt;
root = id[root];
}
return ret;
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
for(int i = 0; i < n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
for(int i = 0; i < m; i++)
{
scanf("%d%d", &edge[i].u, &edge[i].v);
edge[i].u--;
edge[i].v--;
if(edge[i].u != edge[i].v) edge[i].w = dis(p[edge[i].u], p[edge[i].v]);
else edge[i].w = INF; //去除自环
}
type ans = Directed_MST(0, n, m);
if(ans == -1) printf("poor snoopy\n");
else printf("%.2f\n", ans);
}
return 0;
}