https://www.luogu.org/problemnew/show/P4378
https://www.luogu.org/problemnew/show/P4375
第一题是:单向冒泡,求循环数
第二题是:双向冒泡,求循环数
这两道题貌似要这样考虑,左右均考虑达到已排好状态<=>只考虑左达到已排好状态<=>只考虑右达到已排好状态,因为左右移是相互对称的,因此哪个方向考虑起来方便就考虑哪个方向。
第一题:
单向冒泡,每次循环一个数向右方可能会移动一个位置,但每次循环一个数只能向左方移动一个位置。
它的遍数= max {每个数前面有x个比它大},每循环一遍,对于任意元素i,i之前的最大的元素将右移至合适的位置。
注意有相同元素,离散化一下就行了(相同元素按位置分离开)。可以用树状数组。
或者快排一下,找每个元素最终向左了x个,最大的x就是循环次数(原理:对于任意元素i,loop一次<=>i左边大于i的最大的数向右移至i的右方<=>i向左移了一位)
第二题:
双向冒泡,首先离散化(相同元素按位置分离开),然后n个元素就变成了1~n的一个排列。
它的遍数=max{前x个位置上值>x的数有多少个},x∈[1,n]。
因为:
对于任意元素i,i位置是它最终的目的地。
每次循环向后扫会保证前i个位置大于i的某个(最大的那个)元素向右移至合适的位置,
每次循环向前扫会保证后面某个(最小的那个)元素左移至1~i区间合适的位置,
前i个位置值>i的数有k个,则i(1~i)归位需要k次
则循环遍数=max{k}。
用树状数组,前i个位置有i个数,小于等于i的数用树状数组求出来,大于i的数就是i-sum(i),【注:sum(i)是小于等于i的数的个数】。
Update:增加一点理解,其实还是不太理解。
例如:4,3,2,1
如果单向冒泡,①3214,②2134,③1234
如果双向冒泡,①3214,1324;②1234
·看初始位置4的1,单向的话,因为1前面有3个大于1的数,所以要循环3遍后1就到了合适的位置;而双向的话,因为前1个位置有1个小于1的数,所以1遍循环就使得4到最该到的位置,1到该到的位置。
·看初始位置3的2,单向的话,因为2前面有2个大于2的数,所以要循环2遍后2就到了合适的位置;而双向的话,因为前2个位置有2个大于2的数,所以要2遍循环使得前两个位置的2个元素分别出去,2和小于2的元素1分别进去。
·看初始位置2的3,单向的话,因为3前面有1个大于3的数,所以要循环1遍后3就到了合适的位置;而双向的话,因为前3个位置有1个大于3的数,一遍循环就使得4出去,1进来。
其实还是很不理解。
第一题:
#include<bits/stdc++.h>
using namespace std;
#define maxn 100000+1000
long long n,ans;
struct Node{
long long v,pos;
bool operator < (Node x){
return v<x.v||(v==x.v&&pos<x.pos);
}
}a[maxn];
int main()
{
// freopen("input.in","r",stdin);
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i].v,a[i].pos=i;
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
ans=max(ans,a[i].pos-i);
}
cout<<ans+1<<endl;
return 0;
}
第二题:
#include<bits/stdc++.h>
using namespace std;
#define maxn 100000+1000
#define lowbit(x) (x&-x)
int n,a[maxn],c[maxn],ans=1,r[maxn];
void add(int x)
{
while(x<=n)
{
c[x]+=1;
x+=lowbit(x);
}
}
int sum(int x)
{
int ret=0;
while(x>0)
{
ret+=c[x];
x-=lowbit(x);
}
return ret;
}
bool cmp(int x,int y)
{
if(a[x]!=a[y])return a[x]<a[y];
return x<y;
}
int main()
{
// freopen("input.in","r",stdin);
cin>>n;
for(int i=1;i<=n;i++)scanf("%d",&a[i]),r[i]=i;
sort(r+1,r+1+n,cmp);
for(int i=1;i<=n;i++)a[r[i]]=i;
for(int i=1;i<=n;i++)//位置
{
add(a[i]);
int x=i-sum(i);
ans=max(ans,x);
}
cout<<ans<<endl;
return 0;
}