https://www.luogu.org/problemnew/show/P2765
思路:两个数可以相邻转化为两点间连一条边。最小路径覆盖数=总点数-二分图最大匹配数。题目中的n就是最小路径覆盖数,不断增加总点数,当最小路径覆盖数>n时退出并输出方案。
<1>.并不用往回倒一次,因为当加一个点无法增广时,网络G是不变的,二分图最大匹配数+0,总点数+1,最小路径覆盖数+1。
<2>.并不用担心之前的几条路不合适,由于存在反向弧,可以灵活的调整,总可以增广至最大流。
#include <bits/stdc++.h>
using namespace std;
const int maxn=30005;
const int INF=0x3f3f3f3f;
struct Edge{
int from,to,cap,flow;
};
struct Dinic{
int n,pillar,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init()
{
cin>>pillar;
s=0;t=1;
}
void AddEdge(int f,int t,int c)
{
edges.push_back((Edge){f,t,c,0});
edges.push_back((Edge){t,f,0,0});
m=edges.size();
G[f].push_back(m-2);
G[t].push_back(m-1);
}
bool bfs()
{
memset(vis,0,sizeof(vis));
queue<int> Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty())
{
int x=Q.front();Q.pop();
for(int i=0;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t || a==0)return a;
int flow=0,f;
for(int& i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to] && (f=dfs(e.to,min(a,e.cap-e.flow)))>0)
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(!a)break;
}
}
return flow;
}
void solve()
{
int now=0;
while(now<=pillar)
{
n++;
AddEdge(s,n*2,1);
AddEdge(n*2+1,t,1);
for(int i=1;i<n;i++)
{
int x=floor(sqrt(i+n)+0.5);
if(x*x==i+n)AddEdge(i*2,n*2+1,1);
}
int flow=MaxFlow();
if(flow==0)
{
now++;
}
}
n--;
}
int MaxFlow()
{
int flow=0;
while(bfs())
{
memset(cur,0,sizeof(cur));
flow+=dfs(s,INF);
}
return flow;
}
void print()
{
printf("%d\n",n);
int last[maxn]={0},nxt[maxn]={0};
for(int i=0;i<m;i+=2)
{
int from=edges[i].from,to=edges[i].to;
if(from==s||from==t||to==s||to==t)continue;
if(edges[i].flow==1)
{
nxt[from/2]=to/2;
last[to/2]=from/2;
}
}
for(int i=1;i<=n;i++)if(last[i]==0)
{
int u=i;
while(u)
{
printf("%d ",u);
u=nxt[u];
}
putchar('\n');
}
}
}ans;
int main()
{
//freopen("input.in","r",stdin);
ans.init();
ans.solve();
ans.print();
return 0;
}