Just Jump

https://ac.nowcoder.com/acm/contest/888/J
题意:从0跳到L,每一步必须跳至少d格,有m组攻击 ( t i , p i ) (t_i,p_i) (ti,pi),表示第i次不能跳到p这里。求方案数。
思路:
如果不考虑攻击,那么可以用 O ( L ) O(L) O(L)的时间求出 f ( i ) f(i) f(i):跳到i的方案数。
考虑攻击,要用容斥原理。减去受1次攻击的方案数,加回受2次攻击的方案数…
只考虑一次攻击(t,p),从0走到p的方案数为:用隔板法,是C(p-d*t+t-1,t-1)。
d p ( i , 0 / 1 ) dp(i,0/1) dp(i,0/1)表示考虑前i次攻击,第i次攻击得手,并且当前总共被攻击过偶/奇数次,到达p的方案数。对于每个i,枚举上一次攻击j。求出后dp[i]*f[L-p]就是对答案的贡献。总共用 O ( m 2 ) O(m^2) O(m2)求出。
为什么这里的容斥不用 O ( 2 m ) O(2^m) O(2m)呢?因为状态i的转移只需要用到上一个攻击在哪里,前面如何无需计算,只需知道是奇还是偶。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 998244353
#define P pair<int,int>
#define F first
#define S second
#define maxn (10000000+100)

ll l,d,m,f[maxn],sum[maxn],dp[3005][2],fac[maxn],inv[maxn],ans;
P a[3005];

ll pow_mod(ll a,ll n)
{
	if(n==0)return 1;
	ll x=pow_mod(a,n/2);
	x=x*x%mod;
	if(n&1)x=x*a%mod;
	return x;
}

ll C(ll n,ll m)
{
	return fac[n]*inv[m]%mod*inv[n-m]%mod;
}

void init()
{
	inv[0]=fac[0]=1;
	for(int i=1;i<maxn;i++)fac[i]=fac[i-1]*i%mod;
	inv[maxn-1]=pow_mod(fac[maxn-1],mod-2);
	for(int i=maxn-2;i>=0;i--)inv[i]=inv[i+1]*(i+1)%mod;
}

ll geban(ll n,ll m,ll least)
{
	if(least*m>n)return 0;
	return C(n-m*(least-1)-1,m-1);
}

int main()
{
	//freopen("input.in","r",stdin);
	cin>>l>>d>>m;
	for(int i=1;i<=m;i++)scanf("%d%d",&a[i].F,&a[i].S);
	sort(a+1,a+1+m);
	f[0]=sum[0]=1;
	for(int i=1;i<d;i++)sum[i]=1;
	for(int i=d;i<=l;i++)f[i]=sum[i-d],sum[i]=(sum[i-1]+f[i])%mod;
	ans=f[l];
	init();
	for(int i=1;i<=m;i++)
	{
		dp[i][1]=geban(a[i].S,a[i].F,d);
		for(int j=1;j<i;j++)if(a[i].S>a[j].S && a[i].F>a[j].F)
		{
			dp[i][0]+=dp[j][1]*geban(a[i].S-a[j].S,a[i].F-a[j].F,d),dp[i][0]%=mod;
			dp[i][1]+=dp[j][0]*geban(a[i].S-a[j].S,a[i].F-a[j].F,d),dp[i][1]%=mod;
		}
		ans=(ans-dp[i][1]*f[l-a[i].S]%mod+mod)%mod;
		ans=(ans+dp[i][0]*f[l-a[i].S]%mod)%mod;
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值