HDU6656 Kejin Player

http://acm.hdu.edu.cn/showproblem.php?pid=6656
题意:有n+1个等级,初始是1级,想要从i级升到i+1级,花费 a i a_i ai,有 p i p_i pi的概率升级成功, 1 − p i 1-p_i 1pi的概率落回 x i x_i xi级去。问从L级升到R级的期望花费。
思路:尽管看起来转移有环,实际上还是线性模型。因为到达i级,只管他第一次到达i级的情形,即 ( i − 1 ) → i (i-1)\rightarrow i i1i,不用考虑从高等级失败落回i级。
因此,设 f ( i ) : 从 1 级 升 到 i 级 的 期 望 花 费 f(i):从1级升到i级的期望花费 f(i):1i
f ( i + 1 ) = f ( i ) + a i ∗ p i + ( 1 − p i ) ∗ ( a i + f ( i + 1 ) − f ( x i ) ) f(i+1)=f(i)+a_i*p_i+(1-p_i)*(a_i+f(i+1)-f(x_i)) f(i+1)=f(i)+aipi+(1pi)(ai+f(i+1)f(xi))
化简为: f ( i + 1 ) = f ( i ) + a i ∗ p i + ( 1 − p i ) ∗ ( a i − f ( x i ) ) p i f(i+1)=\frac{f(i)+a_i*p_i+(1-p_i)*(a_i-f(x_i))}{p_i} f(i+1)=pif(i)+aipi+(1pi)(aif(xi))
答案就是 f ( r ) − f ( l ) f(r)-f(l) f(r)f(l)

#include<bits/stdc++.h>
using namespace std;
const int maxn=500000+100;
const int mod=1000000000+7;
typedef long long ll;

int T,n,q;
ll f[maxn];

ll pow_mod(ll a,ll n)
{
    if(!n)return 1;
    ll x=pow_mod(a,n/2);
    x=x*x%mod;
    if(n&1)x=x*a%mod;
    return x;
}

ll inv(ll x){return pow_mod(x,mod-2);}

int main()
{
    //freopen("input.in","r",stdin);
    cin>>T;
    f[1]=0;
    int r,s,x,a,l;
    while(T--)
    {
        cin>>n>>q;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d%d",&r,&s,&x,&a);
            ll p=r*inv(s)%mod;
            f[i+1]=(f[i]+a*p+(1-p+mod)*(-f[x]+a+mod))%mod*inv(p)%mod;
        }
        while(q--)
        {
            scanf("%d%d",&l,&r);
            cout<<(f[r]-f[l]+mod)%mod<<"\n";
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值