HDU6638 Snowy Smile

博客介绍了HDU6638题目,即寻找平面上n个带权点中,能被矩形包围的最大点权和。通过将y坐标离散化并按x坐标排序,然后枚举右边界,逐列累加点权,求解最大子段和。算法复杂度为O(n*n*log(n))。

http://acm.hdu.edu.cn/showproblem.php?pid=6638
题意:平面上有n个带权点,问用一个矩形围住的所有点权和最大是多少?
思路:把y坐标离散化,然后按x排序,枚举右边界,依次一列一列地加点,依次求最大子段和。
复杂度O(n∗nlog(n))O(n*nlog(n))O(nnlog(n))

#include<bits/stdc++.h>
using namespace std;
const int maxn=2010;
typedef long long ll;

int T,n;
struct Point{
    int x,y,w;
    bool operator < (Point z){
        return x>z.x;
    }
}p[maxn];

ll lmax[maxn*4],rmax[maxn*4],maxx[maxn*4],sumv[maxn*4];

void build()
{
    memset(lmax,0,sizeof(lmax));
    memset(rmax,0,sizeof(rmax));
    memset(maxx,0,sizeof(maxx));
    memset(sumv,0,sizeof(sumv));
}

void maintain(int o)
{
    int lc=o*2,rc=o*2+1;
    sumv[o]=sumv[lc]+sumv[rc];
    maxx[o]=max(maxx[lc],maxx[rc]);
    maxx[o]=max(maxx[o],rmax[lc]+lmax[rc]);
    lmax[o]=max(lmax[lc],sumv[lc]+lmax[rc]);
    rmax[o]=max(rmax[rc],sumv[rc]+rmax[lc]);
}

void update(int o,int l,int r,int p,int v)
{
    if(l==r)
    {
        sumv[o]+=v;
        lmax[o]+=v;
        rmax[o]+=v;
        maxx[o]+=v;
    }
    else
    {
        int m=(l+r)/2;
        if(p<=m)update(o*2,l,m,p,v);
        else update(o*2+1,m+1,r,p,v);
        maintain(o);
    }
}

int main()
{
    //freopen("input.in","r",stdin);
    cin>>T;
    while(T--)
    {
        cin>>n;
        vector<int> v;
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].w);
            v.push_back(p[i].y);
        }
        sort(v.begin(),v.end());
        v.erase(unique(v.begin(),v.end()),v.end());
        int sz=v.size();
        for(int i=1;i<=n;i++)p[i].y=lower_bound(v.begin(),v.end(),p[i].y)-v.begin()+1;
        sort(p+1,p+1+n);
        ll ans=0;       
        for(int i=1;i<=n;i++)
        {
            if(i!=1&&p[i].x==p[i-1].x)continue;
            build();
            int j=i,start=i;
            while(j<=n)
            {
                while(j<=n)
                {
                    if(j!=start && p[j].x!=p[j-1].x)break;
                    update(1,1,n,p[j].y,p[j].w);
                    j++;
                }
                ans=max(ans,maxx[1]);
                start=j;
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值