编写一个函数来查找字符串数组中的最长公共前缀。
如果不存在公共前缀,返回空字符串 ""。
示例 1:
输入: ["flower","flow","flight"]
输出: "fl"
示例 2:
输入: ["dog","racecar","car"]
输出: ""
解释: 输入不存在公共前缀。
方法一:水平扫描法
思路
首先,我们将描述一种查找一组字符串的最长公共前缀 LCP(S1…Sn)的简单方法。 我们将会用到这样的结论:
LCP(S1…Sn)=LCP(LCP(LCP(S1,S2),S3),…Sn)
算法
为了运用这种思想,算法要依次遍历字符串 [S1…Sn],当遍历到第 i 个字符串的时候,找到最长公共前缀 LCP(S1…Si)。当 LCP(S1…Si) 是一个空串的时候,算法就结束了。 否则,在执行了 n次遍历之后,算法就会返回最终答案 LCP(S1…Sn)。
Java:
class Solution
{
public String longestCommonPrefix(String[] strs)
{
if (strs.length == 0) return "";
String prefix = strs[0];
for (int i = 1; i < strs.length; i++) //遍历String数组
while (strs[i].indexOf(prefix) != 0) //查找子串prefix是否是前缀
{
prefix = prefix.substring(0, prefix.length() - 1); //如果不是则除去末尾字母
if (prefix.isEmpty()) return "";
}
return prefix;
}
}
算法二:水平扫描
算法
想象数组的末尾有一个非常短的字符串,使用上述方法依旧会进行 SSS 次比较。优化这类情况的一种方法就是水平扫描。我们从前往后枚举字符串的每一列,先比较每个字符串相同列上的字符(即不同字符串相同下标的字符)然后再进行对下一列的比较。
JAVA:
public String longestCommonPrefix(String[] strs)
{
if (strs == null || strs.length == 0) return "";
for (int i = 0; i < strs[0].length() ;i++)
{
char c = strs[0].charAt(i);
for (int j = 1; j < strs.length; j ++)
{
if (i == strs[j].length() || strs[j].charAt(i) != c)
return strs[0].substring(0, i);
}
}
return strs[0];
}
算法三:分治
思路
这个算法的思路来自于LCP操作的结合律。 我们可以发现: LCP(S1…Sn)=LCP(LCP(S1…Sk),LCP(Sk+1…Sn)) ,其中 LCP(S1…Sn)是字符串 [S1…Sn]的最长公共前缀,1<k<n。
算法
为了应用上述的结论,我们使用分治的技巧,将原问题 LCP(Si⋯Sj)分成两个子问题 LCP(Si⋯Smid)与 LCP(Smid+1,Sj) ,其中 mid = (i+j)/2。 我们用子问题的解 lcpLeft 与 lcpRight 构造原问题的解 LCP(Si⋯Sj)。 从头到尾挨个比较 lcpLeft 与 lcpRight 中的字符,直到不能再匹配为止。 计算所得的 lcpLeft 与 lcpRight 最长公共前缀就是原问题的解 LCP(Si⋯Sj)。
public String longestCommonPrefix(String[] strs)
{
if (strs == null || strs.length == 0) return "";
return longestCommonPrefix(strs, 0 , strs.length - 1);
}
private String longestCommonPrefix(String[] strs, int l, int r)
{
if (l == r)
{
return strs[l];
}
else
{
int mid = (l + r)/2;
String lcpLeft = longestCommonPrefix(strs, l , mid);
String lcpRight = longestCommonPrefix(strs, mid + 1,r);
return commonPrefix(lcpLeft, lcpRight);
}
}
String commonPrefix(String left,String right)
{
int min = Math.min(left.length(), right.length());
for (int i = 0; i < min; i++)
{
if ( left.charAt(i) != right.charAt(i) )
return left.substring(0, i);
}
return left.substring(0, min);
}
方法四:二分查找法
这个想法是应用二分查找法找到所有字符串的公共前缀的最大长度 L。 算法的查找区间是 (0…minLen),其中 minLen 是输入数据中最短的字符串的长度,同时也是答案的最长可能长度。 每一次将查找区间一分为二,然后丢弃一定不包含最终答案的那一个。算法进行的过程中一共会出现两种可能情况:
S[1...mid] 不是所有串的公共前缀。 这表明对于所有的 j > i S[1..j] 也不是公共前缀,于是我们就可以丢弃后半个查找区间。
S[1...mid] 是所有串的公共前缀。 这表示对于所有的 i < j S[1..i] 都是可行的公共前缀,因为我们要找最长的公共前缀,所以我们可以把前半个查找区间丢弃。
public String longestCommonPrefix(String[] strs) {
if (strs == null || strs.length == 0)
return "";
int minLen = Integer.MAX_VALUE;
for (String str : strs)
minLen = Math.min(minLen, str.length());
int low = 1;
int high = minLen;
while (low <= high) {
int middle = (low + high) / 2;
if (isCommonPrefix(strs, middle))
low = middle + 1;
else
high = middle - 1;
}
return strs[0].substring(0, (low + high) / 2);
}
private boolean isCommonPrefix(String[] strs, int len){
String str1 = strs[0].substring(0,len);
for (int i = 1; i < strs.length; i++)
if (!strs[i].startsWith(str1))
return false;
return true;
}