[bzoj3173][TJOI2013]最长上升子序列

12 篇文章 0 订阅
9 篇文章 0 订阅

题目大意

共n次操作,第i次操作在第xi个数后插入数字i并询问当前最长上升子序列。
n<=100000。

离线大法好

我们可以先处理出最终序列,然后做一次最长上升子序列。假设数字i最终位置为a[i],那么对于第i次询问答案就是f[a[i]]。

Treap

如果强制在线该怎么办?
那就是一道Treap裸题了。

#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int maxn=100000+10;
int fix[maxn],key[maxn],num[maxn],size[maxn],tree[maxn][2];
int i,j,k,l,r,t,n,m,ans,root;
void update(int x){
    num[x]=max(key[x],max(num[tree[x][0]],num[tree[x][1]]));
    size[x]=size[tree[x][0]]+size[tree[x][1]]+1;
}
void split(int x,int y,int &l,int &r){
    if (!x) l=r=0;
    else{
        if (size[tree[x][0]]>=y){
            split(tree[x][0],y,l,r);
            tree[x][0]=r;
            r=x;
        }
        else{
            split(tree[x][1],y-size[tree[x][0]]-1,l,r);
            tree[x][1]=l;
            l=x;
        }
        update(x);
    }
}
void merge(int l,int r,int &x){
    if (!l||!r) x=l+r;
    else{
        if (fix[l]<fix[r]){
            merge(tree[l][1],r,tree[l][1]);
            x=l;
        }
        else{
            merge(l,tree[r][0],tree[r][0]);
            x=r;
        }
        update(x);
    }
}
int main(){
    srand(time(0));
    ans=0;
    scanf("%d",&n);
    root=0;
    fo(i,1,n){
        scanf("%d",&k);
        split(root,k,l,r);
        num[i]=key[i]=num[l]+1;
        ans=max(ans,key[i]);
        fix[i]=rand();
        size[i]=1;
        merge(l,i,l);
        merge(l,r,root);
        printf("%d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值