不来也不去的一只失忆蝴蝶

曾迷途才怕追不上满街赶路人

[bzoj2818]gcd

题目大意

i=1nj=1n(i,j)

有趣方法

很容易想到莫比乌斯反演啦,但本弱智打了另外的弱智方法。
我们知道对于j<i,若有(i,j)=1,那么就有(i*k,j*k)=k。
也就是说只要k是质数就可以算进答案。
于是线性筛,筛出欧拉函数,并处理前缀质数个数。
那么i对于答案的贡献是phi(i)sum(n/i)
最后答案乘以2再加上sum[n]即可。

#include<cstdio> 
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int maxd=10000000+10;
int sum[maxd],phi[maxd],pri[maxd];
bool bz[maxd];
int i,j,k,l,t,n,m,top;
ll ans;
int main(){
    scanf("%d",&n);
    bz[1]=1;
    fo(i,2,n){
        if (!bz[i]){
            pri[++top]=i;
            phi[i]=i-1;
        }
        fo(j,1,top){
            if ((ll)i*pri[j]>n) break;
            bz[i*pri[j]]=1;
            if (i%pri[j]==0){
                phi[i*pri[j]]=phi[i]*pri[j];
                break;
            }
            phi[i*pri[j]]=phi[i]*(pri[j]-1);
        }
    }
    fo(i,1,n) sum[i]=sum[i-1]+(!bz[i]);
    fo(i,1,n) ans+=(ll)phi[i]*sum[n/i];
    printf("%lld\n",ans*2+sum[n]);
}
阅读更多
版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/51540894
上一篇[bzoj1458]士兵占领
下一篇[bzoj1455]罗马游戏
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭