题目描述
XLk觉得《上帝造题的七分钟》不太过瘾,于是有了第二部。
“第一分钟,X说,要有数列,于是便给定了一个正整数数列。
第二分钟,L说,要能修改,于是便有了对一段数中每个数都开平方(下取整)的操作。
第三分钟,k说,要能查询,于是便有了求一段数的和的操作。
第四分钟,彩虹喵说,要是noip难度,于是便有了数据范围。
第五分钟,诗人说,要有韵律,于是便有了时间限制和内存限制。
第六分钟,和雪说,要省点事,于是便有了保证运算过程中及最终结果均不超过64位有符号整数类型的表示范围的限制。
第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”
——《上帝造题的七分钟·第二部》
所以这个神圣的任务就交给你了。
线段树
我们想想开方次数不会很多。
所以修改操作暴力递归下去修改。
遇到全1的区间就退出。
#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int maxn=100000+10;
bool bz[maxn*4];
ll v[maxn],tree[maxn*4];
int i,j,k,l,r,t,n,m;
ll read(){
ll x=0;
int f=1;
char ch=getchar();
while (ch<'0'||ch>'9'){
if (ch=='-') f=-1;
ch=getchar();
}
while (ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
void build(int p,int l,int r){
if (l==r){
tree[p]=v[l];
bz[p]=(v[l]==1);
return;
}
int mid=(l+r)/2;
build(p*2,l,mid);build(p*2+1,mid+1,r);
tree[p]=tree[p*2]+tree[p*2+1];
bz[p]=bz[p*2]&bz[p*2+1];
}
void change(int p,int l,int r,int a,int b){
if (bz[p]) return;
if (l==r){
tree[p]=ll((sqrt(tree[p])));
if (tree[p]==1) bz[p]=1;
return;
}
int mid=(l+r)/2;
if (b<=mid) change(p*2,l,mid,a,b);
else if (a>mid) change(p*2+1,mid+1,r,a,b);
else change(p*2,l,mid,a,mid),change(p*2+1,mid+1,r,mid+1,b);
tree[p]=tree[p*2]+tree[p*2+1];
bz[p]=bz[p*2]&bz[p*2+1];
}
ll query(int p,int l,int r,int a,int b){
if (l==a&&r==b) return tree[p];
int mid=(l+r)/2;
if (b<=mid) return query(p*2,l,mid,a,b);
else if (a>mid) return query(p*2+1,mid+1,r,a,b);
else return query(p*2,l,mid,a,mid)+query(p*2+1,mid+1,r,mid+1,b);
}
int main(){
//freopen("data.in","r",stdin);freopen("data.out","w",stdout);
n=read();
fo(i,1,n) v[i]=read();
build(1,1,n);
m=read();
fo(i,1,m){
if (i==m/2) {
t=t;
}
t=read();l=read();r=read();
if (l>r) swap(l,r);
if (t==0) change(1,1,n,l,r);
else printf("%lld\n",query(1,1,n,l,r));
//printf("%d\n",i);
}
}