题目大意
你需要维护一个序列,支持以下4种操作。一,将区间(u,v)的数覆盖为C;二,
将区间(u,v)的数依次加上一个以C为首项、C为公差的等差数列;三,将数C插入
第i个位置;四,查询区间(u,v)的数的和。序列最初有n个数,一共会有Q次操
作。保证结果在longlong范围内。
数据结构
两个标记均可合并
顺序是先执行赋值
splay维护
#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int maxn=100000+10;
int father[maxn*2],tree[maxn*2][2],size[maxn*2],sta[maxn*2];
ll key[maxn*2],num[maxn*2];
ll st[maxn*2],sx[maxn*2],gc[maxn*2];
bool bz[maxn*2];
int i,j,k,l,r,mid,t,n,m,tot,top,root;
ll x,ans;
ll read(){
ll x=0,f=1;
char ch=getchar();
while (ch<'0'||ch>'9'){
if (ch=='-') f=-1;
ch=getchar();
}
while (ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
int pd(int x){
return tree[father[x]][1]==x;
}
void update(int x){
num[x]=num[tree[x][0]]+num[tree[x][1]]+key[x];
size[x]=size[tree[x][0]]+size[tree[x][1]]+1;
}
void rotate(int x){
int y=father[x],z=pd(x);
father[x]=father[y];
if (father[y]) tree[father[y]][pd(y)]=x;
tree[y][z]=tree[x][1-z];
if (tree[x][1-z]) father[tree[x][1-z]]=y;
tree[x][1-z]=y;
father[y]=x;
update(y);
update(x);
}
void marks(int x,ll v){
if (!x) return;
bz[x]=1;
sx[x]=gc[x]=0;
st[x]=key[x]=v;
num[x]=(ll)v*size[x];
}
ll calc(ll s,ll d,int n){
return (2*s+(ll)(n-1)*d)*n/2;
}
void markd(int x,ll s,ll d){
if (!x) return;
sx[x]+=s;
gc[x]+=d;
key[x]+=(s+(ll)d*size[tree[x][0]]);
num[x]+=calc(s,d,size[x]);
}
void clear(int x){
if (bz[x]){
marks(tree[x][0],st[x]);
marks(tree[x][1],st[x]);
bz[x]=0;
}
if (sx[x]||gc[x]){
markd(tree[x][0],sx[x],gc[x]);
markd(tree[x][1],sx[x]+(ll)gc[x]*(size[tree[x][0]]+1),gc[x]);
sx[x]=gc[x]=0;
}
}
void remove(int x,int y){
top=0;
while (x!=y){
sta[++top]=x;
x=father[x];
}
while (top){
clear(sta[top]);
top--;
}
}
void splay(int x,int y){
remove(x,y);
while (father[x]!=y){
if (father[father[x]]!=y)
if (pd(x)==pd(father[x])) rotate(father[x]);else rotate(x);
rotate(x);
}
}
int kth(int x,int y){
clear(x);
if (y==size[tree[x][0]]+1) return x;
else if (y<size[tree[x][0]]+1) return kth(tree[x][0],y);
else return kth(tree[x][1],y-size[tree[x][0]]-1);
}
void split(int x,int j,int &l,int &r){
if (!j){
l=0;
r=x;
return;
}
int k=kth(x,j);
splay(k,0);
clear(k);
l=k;r=tree[k][1];
father[r]=0;
tree[l][1]=0;
update(l);
}
void merge(int l,int r,int &x){
if (!l||!r){
x=l+r;
return;
}
int k=kth(l,size[l]);
splay(k,0);
clear(k);
tree[k][1]=r;
father[r]=k;
update(k);
x=k;
}
int main(){
//freopen("3188.in","r",stdin);freopen("3188.out","w",stdout);
n=read();m=read();
fo(i,1,n){
key[i]=read();
father[i]=i-1;
if (i>1) tree[i-1][1]=i;
}
fd(i,n,1) update(i);
tot=n;
root=1;
while (m--){
t=read();
if (t==1){
j=read();k=read();x=read();
split(root,k,l,r);
split(l,j-1,l,mid);
marks(mid,x);
merge(l,mid,l);
merge(l,r,root);
}
else if (t==2){
j=read();k=read();x=read();
split(root,k,l,r);
split(l,j-1,l,mid);
markd(mid,x,x);
merge(l,mid,l);
merge(l,r,root);
}
else if (t==3){
j=read();x=read();
split(root,j-1,l,r);
key[++tot]=x;
num[tot]=x;
size[tot]=1;
merge(l,tot,l);
merge(l,r,root);
}
else{
j=read();k=read();
split(root,k,l,r);
split(l,j-1,l,mid);
printf("%lld\n",num[mid]);
merge(l,mid,l);
merge(l,r,root);
}
}
}