[bzoj3188]Upit

题目大意

你需要维护一个序列,支持以下4种操作。一,将区间(u,v)的数覆盖为C;二,
将区间(u,v)的数依次加上一个以C为首项、C为公差的等差数列;三,将数C插入
第i个位置;四,查询区间(u,v)的数的和。序列最初有n个数,一共会有Q次操
作。保证结果在longlong范围内。

数据结构

两个标记均可合并
顺序是先执行赋值
splay维护

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef long long ll;
const int maxn=100000+10;
int father[maxn*2],tree[maxn*2][2],size[maxn*2],sta[maxn*2];
ll key[maxn*2],num[maxn*2];
ll st[maxn*2],sx[maxn*2],gc[maxn*2];
bool bz[maxn*2];
int i,j,k,l,r,mid,t,n,m,tot,top,root;
ll x,ans;
ll read(){
    ll x=0,f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9'){
        if (ch=='-') f=-1;
        ch=getchar();
    }
    while (ch>='0'&&ch<='9'){
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
int pd(int x){
    return tree[father[x]][1]==x;
}
void update(int x){
    num[x]=num[tree[x][0]]+num[tree[x][1]]+key[x];
    size[x]=size[tree[x][0]]+size[tree[x][1]]+1;
}
void rotate(int x){
    int y=father[x],z=pd(x);
    father[x]=father[y];
    if (father[y]) tree[father[y]][pd(y)]=x;
    tree[y][z]=tree[x][1-z];
    if (tree[x][1-z]) father[tree[x][1-z]]=y;
    tree[x][1-z]=y;
    father[y]=x;
    update(y);
    update(x);
}
void marks(int x,ll v){
    if (!x) return;
    bz[x]=1;
    sx[x]=gc[x]=0;
    st[x]=key[x]=v;
    num[x]=(ll)v*size[x];
}
ll calc(ll s,ll d,int n){
    return (2*s+(ll)(n-1)*d)*n/2;
}
void markd(int x,ll s,ll d){
    if (!x) return; 
    sx[x]+=s;
    gc[x]+=d;
    key[x]+=(s+(ll)d*size[tree[x][0]]);
    num[x]+=calc(s,d,size[x]);
}
void clear(int x){
    if (bz[x]){
        marks(tree[x][0],st[x]);
        marks(tree[x][1],st[x]);
        bz[x]=0;
    }
    if (sx[x]||gc[x]){
        markd(tree[x][0],sx[x],gc[x]);
        markd(tree[x][1],sx[x]+(ll)gc[x]*(size[tree[x][0]]+1),gc[x]);
        sx[x]=gc[x]=0;
    }
}
void remove(int x,int y){
    top=0;
    while (x!=y){
        sta[++top]=x;
        x=father[x];
    }
    while (top){
        clear(sta[top]);
        top--;
    }
}
void splay(int x,int y){
    remove(x,y);
    while (father[x]!=y){
        if (father[father[x]]!=y)
            if (pd(x)==pd(father[x])) rotate(father[x]);else rotate(x);
        rotate(x);
    }
}
int kth(int x,int y){
    clear(x);
    if (y==size[tree[x][0]]+1) return x;
    else if (y<size[tree[x][0]]+1) return kth(tree[x][0],y);
    else return kth(tree[x][1],y-size[tree[x][0]]-1);
}
void split(int x,int j,int &l,int &r){
    if (!j){
        l=0;
        r=x;
        return;
    }
    int k=kth(x,j);
    splay(k,0);
    clear(k);
    l=k;r=tree[k][1];
    father[r]=0;
    tree[l][1]=0;
    update(l);
}
void merge(int l,int r,int &x){
    if (!l||!r){
        x=l+r;
        return;
    }
    int k=kth(l,size[l]);
    splay(k,0);
    clear(k);
    tree[k][1]=r;
    father[r]=k;
    update(k);
    x=k;
}
int main(){
    //freopen("3188.in","r",stdin);freopen("3188.out","w",stdout);
    n=read();m=read();
    fo(i,1,n){
        key[i]=read();
        father[i]=i-1;
        if (i>1) tree[i-1][1]=i;
    }
    fd(i,n,1) update(i);
    tot=n;
    root=1;
    while (m--){
        t=read();
        if (t==1){
            j=read();k=read();x=read();
            split(root,k,l,r);
            split(l,j-1,l,mid);
            marks(mid,x);
            merge(l,mid,l);
            merge(l,r,root);
        }
        else if (t==2){
            j=read();k=read();x=read();
            split(root,k,l,r);
            split(l,j-1,l,mid);
            markd(mid,x,x);
            merge(l,mid,l);
            merge(l,r,root);
        }
        else if (t==3){
            j=read();x=read();
            split(root,j-1,l,r);
            key[++tot]=x;
            num[tot]=x;
            size[tot]=1;
            merge(l,tot,l);
            merge(l,r,root);
        }
        else{
            j=read();k=read();
            split(root,k,l,r);
            split(l,j-1,l,mid);
            printf("%lld\n",num[mid]);
            merge(l,mid,l);
            merge(l,r,root);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值