[bzoj4033]树上染色

题目描述

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并
将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。
问收益最大值是多少。

DP

首先贡献很恶心,但我们可以这样考虑,只考虑每条边的贡献。
设f[i,j]表示以i为根的子树中染黑了j个点的最大贡献,这里只考虑了子树中每条边以及i的父亲边的贡献。
那么转移很显然。
复杂度呢?n^3?
我们合并并不需要每次枚举m那么多,实际上枚举量等于子树大小。
那么我们改改枚举,复杂度就是n^2了!
因为可以注意到任意两点会在其lca处被计算,实际上枚举量只有n^2。

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
#define min(a,b) (a<b?a:b)
using namespace std;
typedef long long ll;
const int maxn=2000+10;
ll f[maxn][maxn],g[maxn];
int h[maxn],go[maxn*2],dis[maxn*2],nxt[maxn*2],size[maxn];
int i,j,k,l,t,n,m,tot;
void add(int x,int y,int z){
    go[++tot]=y;
    dis[tot]=z;
    nxt[tot]=h[x];
    h[x]=tot;
}
void dfs(int x,int y,int z){
    int i,j,k,t=h[x];
    while (t){
        if (go[t]!=y){
            dfs(go[t],x,dis[t]);
            fo(i,0,m) g[i]=0;
            fo(i,0,min(size[x],m))
                fo(j,0,min(size[go[t]],m-i))
                    g[i+j]=max(g[i+j],f[x][i]+f[go[t]][j]);
            fo(i,0,m) f[x][i]=g[i];
            size[x]+=size[go[t]];
        }
        t=nxt[t];
    }
    fd(i,m-1,0) f[x][i+1]=max(f[x][i+1],f[x][i]);
    size[x]++;
    fo(i,0,m){
        f[x][i]+=(ll)z*i*(m-i);
        f[x][i]+=(ll)z*(size[x]-i)*(n-m-size[x]+i);
    }
}
int main(){
    scanf("%d%d",&n,&m);
    fo(i,1,n-1){
        scanf("%d%d%d",&j,&k,&l);
        add(j,k,l);add(k,j,l);
    }
    dfs(1,0,0);
    printf("%lld\n",f[1][m]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值