[JZOJ5136][SDOI省队集训2017]重排

题目大意

这里写图片描述

做法

按拓扑序倒序做。
设出边个数为k。
没有自环可以考虑k^2从大到小枚举权值v然后two pointer来计算P(v)表示>=v的概率,最后前缀相减即可。
注意不要写成k^2带log。
这里很麻烦。
有自环可以考虑二分+判定。
具体见代码。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef double db;
const int maxn=1000+10;
const db eps=1e-7,inf=10000000;
int h[maxn],go[maxn],next[maxn],d[maxn],zz[maxn],dl[maxn];
db f[maxn],a[maxn],dis[maxn],c[maxn],sum[maxn*maxn],x,xdl;
db ee[maxn],lg[maxn];
struct dong{
    db x;
    int y;
    friend bool operator <(dong a,dong b){
        return a.x<b.x;
    }
};
dong b[maxn*maxn],e[maxn*maxn],g[maxn*maxn];
bool bz[maxn];
int i,j,k,l,r,s,t,n,m,tot,top,num,head,tail,now,cnt,wdc,sz;
void add(int x,int y,db z){
    if (x!=y) d[y]++;
    go[++tot]=y;
    dis[tot]=z;
    next[tot]=h[x];
    h[x]=tot;
}
db check(db ans){
    int i,j;
    fo(i,1,tot) e[i].x+=ans;
    i=j=1;
    num=0;
    while (i<=tot||j<=top){
        if (i>tot) g[++num]=b[j++];
        else if (j>top) g[++num]=e[i++];
        else if (e[i]<b[j]) g[++num]=e[i++];
        else g[++num]=b[j++];
    }
    fo(i,k-cnt+1,k) a[i]=ans;
    fo(i,1,k) lg[i]=log(i);
    sort(a+1,a+k+1);
    fo(i,0,k) zz[i]=k+1;
    xdl=log(1);
    sz=k;
    fd(i,num,1){
        /*if (xdl==0){
            printf("%d\n",i);
        }*/
        //printf("%.5lf\n",xdl);
        j=g[i].y;
        //if (k+1-zz[j]-(j-1)>0) xdl=xdl*(k-j+1)/(k+1-zz[j]-(j-1));
        if (k+1-zz[j]-(j-1)>0) xdl=xdl+lg[k-j+1]-lg[k+1-zz[j]-(j-1)];
        zz[j]--;
        if (k+1-zz[j]-(j-1)==1) sz--;
        //if (k+1-zz[j]-(j-1)>0) xdl=xdl*(k+1-zz[j]-(j-1))/(k-j+1);
        if (k+1-zz[j]-(j-1)>0) xdl=xdl+lg[k+1-zz[j]-(j-1)]-lg[k-j+1];
        if (sz) sum[i]=0;else sum[i]=exp(xdl);
    }
    fo(i,1,num-1) sum[i]-=sum[i+1];
    db x=0;
    fo(i,1,num) x+=sum[i]*g[i].x;
    fo(i,1,tot) e[i].x-=ans;
    return x;
}
db binary(){
    //if (now==9) return 7.253805;
    db l=0,r=20000,mid;
    while (r-l>=eps){
        mid=(l+r)/2;
        if (check(mid)>=mid) l=mid;else r=mid;
    }
    return l;
}
int main(){
    freopen("shuffle.in","r",stdin);freopen("shuffle.out","w",stdout);
    scanf("%d%d%d%d",&n,&m,&s,&t);
    fo(i,1,m){
        scanf("%d%d%lf",&j,&k,&x);
        add(j,k,x);
    }
    fo(i,1,n)
        if (d[i]==0) dl[++tail]=i;
    //dl[tail=1]=s;
    while (head<tail){
        now=dl[++head];
        r=h[now];
        while (r){
            d[go[r]]--;
            if (d[go[r]]==0) dl[++tail]=go[r];
            r=next[r];
        }
    }
    bz[t]=1;
    fd(i,tail,1){
        now=dl[i];
        r=h[now];
        while (r){
            bz[now]|=bz[go[r]];
            r=next[r];
        }
    }
    if (!bz[s]){
        printf("-1\n");
        return 0;
    }
    fo(i,1,n) f[i]=inf;
    fd(wdc,tail,1){
        now=dl[wdc];
        if (now==t){
            f[now]=0;
            continue;
        }
        if (!bz[now]) continue;
        k=cnt=0;
        r=h[now];
        while (r){
            c[++k]=dis[r];
            if (go[r]!=now) a[k-cnt]=f[go[r]];else cnt++;
            r=next[r];
        }
        sort(c+1,c+k+1);
        top=0;
        fo(i,1,k)
            fo(j,1,k-cnt)
                b[++top].x=c[i]+a[j],b[top].y=i;
        sort(b+1,b+top+1);
        tot=0;
        fo(i,1,k)
            fo(j,1,cnt) e[++tot].x=c[i],e[tot].y=i;
        sort(e+1,e+tot+1);
        f[now]=binary();
    }
    printf("%.6lf\n",f[s]);
    //fo(i,1,n) printf("%d %.7lf\n",i,f[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值