题目大意
做法
按拓扑序倒序做。
设出边个数为k。
没有自环可以考虑k^2从大到小枚举权值v然后two pointer来计算P(v)表示>=v的概率,最后前缀相减即可。
注意不要写成k^2带log。
这里很麻烦。
有自环可以考虑二分+判定。
具体见代码。
#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
#define fd(i,a,b) for(i=a;i>=b;i--)
using namespace std;
typedef double db;
const int maxn=1000+10;
const db eps=1e-7,inf=10000000;
int h[maxn],go[maxn],next[maxn],d[maxn],zz[maxn],dl[maxn];
db f[maxn],a[maxn],dis[maxn],c[maxn],sum[maxn*maxn],x,xdl;
db ee[maxn],lg[maxn];
struct dong{
db x;
int y;
friend bool operator <(dong a,dong b){
return a.x<b.x;
}
};
dong b[maxn*maxn],e[maxn*maxn],g[maxn*maxn];
bool bz[maxn];
int i,j,k,l,r,s,t,n,m,tot,top,num,head,tail,now,cnt,wdc,sz;
void add(int x,int y,db z){
if (x!=y) d[y]++;
go[++tot]=y;
dis[tot]=z;
next[tot]=h[x];
h[x]=tot;
}
db check(db ans){
int i,j;
fo(i,1,tot) e[i].x+=ans;
i=j=1;
num=0;
while (i<=tot||j<=top){
if (i>tot) g[++num]=b[j++];
else if (j>top) g[++num]=e[i++];
else if (e[i]<b[j]) g[++num]=e[i++];
else g[++num]=b[j++];
}
fo(i,k-cnt+1,k) a[i]=ans;
fo(i,1,k) lg[i]=log(i);
sort(a+1,a+k+1);
fo(i,0,k) zz[i]=k+1;
xdl=log(1);
sz=k;
fd(i,num,1){
/*if (xdl==0){
printf("%d\n",i);
}*/
//printf("%.5lf\n",xdl);
j=g[i].y;
//if (k+1-zz[j]-(j-1)>0) xdl=xdl*(k-j+1)/(k+1-zz[j]-(j-1));
if (k+1-zz[j]-(j-1)>0) xdl=xdl+lg[k-j+1]-lg[k+1-zz[j]-(j-1)];
zz[j]--;
if (k+1-zz[j]-(j-1)==1) sz--;
//if (k+1-zz[j]-(j-1)>0) xdl=xdl*(k+1-zz[j]-(j-1))/(k-j+1);
if (k+1-zz[j]-(j-1)>0) xdl=xdl+lg[k+1-zz[j]-(j-1)]-lg[k-j+1];
if (sz) sum[i]=0;else sum[i]=exp(xdl);
}
fo(i,1,num-1) sum[i]-=sum[i+1];
db x=0;
fo(i,1,num) x+=sum[i]*g[i].x;
fo(i,1,tot) e[i].x-=ans;
return x;
}
db binary(){
//if (now==9) return 7.253805;
db l=0,r=20000,mid;
while (r-l>=eps){
mid=(l+r)/2;
if (check(mid)>=mid) l=mid;else r=mid;
}
return l;
}
int main(){
freopen("shuffle.in","r",stdin);freopen("shuffle.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&s,&t);
fo(i,1,m){
scanf("%d%d%lf",&j,&k,&x);
add(j,k,x);
}
fo(i,1,n)
if (d[i]==0) dl[++tail]=i;
//dl[tail=1]=s;
while (head<tail){
now=dl[++head];
r=h[now];
while (r){
d[go[r]]--;
if (d[go[r]]==0) dl[++tail]=go[r];
r=next[r];
}
}
bz[t]=1;
fd(i,tail,1){
now=dl[i];
r=h[now];
while (r){
bz[now]|=bz[go[r]];
r=next[r];
}
}
if (!bz[s]){
printf("-1\n");
return 0;
}
fo(i,1,n) f[i]=inf;
fd(wdc,tail,1){
now=dl[wdc];
if (now==t){
f[now]=0;
continue;
}
if (!bz[now]) continue;
k=cnt=0;
r=h[now];
while (r){
c[++k]=dis[r];
if (go[r]!=now) a[k-cnt]=f[go[r]];else cnt++;
r=next[r];
}
sort(c+1,c+k+1);
top=0;
fo(i,1,k)
fo(j,1,k-cnt)
b[++top].x=c[i]+a[j],b[top].y=i;
sort(b+1,b+top+1);
tot=0;
fo(i,1,k)
fo(j,1,cnt) e[++tot].x=c[i],e[tot].y=i;
sort(e+1,e+tot+1);
f[now]=binary();
}
printf("%.6lf\n",f[s]);
//fo(i,1,n) printf("%d %.7lf\n",i,f[i]);
}