题目链接:http://codeforces.com/problemset/problem/708/B
题意:给出四个数分别代表字符串中子序列00,01,10,11的数量,求一个满足该条件的字符串。
思路:首先a和d必须是k * (k - 1) / 2 (k >0 )的形式,通过此式可以算出0和1的数目num0和num1。其中如果a(d)==0则num0(num1)可以为0或1,需要对num0(num1)==0的情况进行特判。如特判完成且程序未结束,num0和num1必定不为0,即可求num0与num1。并且b + c == num0 * num1(证明:可以先左边num0个0,右边num0个1,此时cur01 = b*c,cur10 = 0 ,将其中一个0与一个1对调后cur01减少了x,对应cur10增加了x,故cur01 + cur10 = num0 * num1)。然后先初始化左边num0个0,右边num1个1,将num1个1不断向左移动,直到cur01小于b,将num1个1右边的0中的某个0 和 num1个1中的某个1进行对调,补回(b-cur01)个01串。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+3;
int str[N];
map<int,int> sum;//判断是否为k* (k - 1) /2形式
int main()
{
int a,b,c,d;
scanf("%d %d %d %d",&a,&b,&c,&d);
for(int i = 1,k = 0 ;k <= 1e9 ;k += i,i++)
sum[k] = i;
if(a == 0 && b == 0 && c == 0 && d == 0)
{
printf("0\n");
return 0;
}
if(a == 0 && b == 0 && c == 0 && sum[d])
{
for(int i = 0 ;i < sum[d] ;i++)
printf("1");
printf("\n");
return 0;
}
if(d == 0 && b == 0 && c == 0 && sum[a])
{
for(int i = 0 ;i < sum[a] ;i++)
printf("0");
printf("\n");
return 0;
}
if(sum[a] == 0 || sum[d] == 0)
{
printf("Impossible\n");
return 0;
}
int num0 = sum[a] ,num1 = sum[d] ,num = num0 + num1;
if(b + c != num0 * num1)
{
printf("Impossible\n");
return 0;
}
int l = 1 + b/num1 ,r = l + num1;
for(int i = l ;i < r ;i++)
str[i] = 1;
str[r] = 1 ,str[r - b%num1] = 0;
for(int i = 1 ;i <= num ;i++)
printf("%d",str[i]);
printf("\n");
return 0;
}