数学老师给小明出了一道等差数列求和的题目。
但是粗心的小明忘记了一部分的数列,只记得其中 N个整数。
现在给出这 N个整数,小明想知道包含这 N个整数的最短的等差数列有几项?
输入格式
输入的第一行包含一个整数 N。
第二行包含 N个整数 A1,A2,⋅⋅⋅,AN。(注意 A1∼AN 并不一定是按等差数列中的顺序给出)
输出格式
输出一个整数表示答案。
数据范围
2≤N≤100000
0≤Ai≤1e9
输入样例:
5
2 6 4 10 20
输出样例:
10
样例解释
包含 2、6、4、10、20 的最短的等差数列是 2、4、6、8、10、12、14、16、18、20。
思路:
一开始想用的是二分答案去解决,但是不满足二分的二段性,因为当mid大于公差d的时候r=mid-1满足题意,但是当mid小于公差d时,就不都是答案,因此无法l=mid+1去缩小区间。
正确的思路是,根据题意要求的是最短的等差数列长度,我们知道(a末-a初)/d+1是等差数列的长度,因为a末-a初是固定的,所以只要让d最大即可满足题意,这就需要用到欧几里得算法求解d的最大公约数。用欧几里得时,可以先让d初始化为0,因为0和任何数求解最大公约数就是本身数字(如0和2的最大公约数为2)。
注意点:
有一种情况是d为0,也就是例如1,1,1这个样例,只需要让a