【蓝桥杯真题-k倍区间】

文章描述了一种解决给定数列中K倍区间计数问题的方法,利用动态规划优化了两层循环,通过计算前缀和及其模k的值来确定K倍区间,避免了时间复杂度过高的问题。给出的AC代码展示了如何使用C++实现这一算法。
摘要由CSDN通过智能技术生成

Description

给定一个长度为 N 的数列,A1​,A2​,⋯AN​,如果其中一段连续的子序列 Ai​,Ai+1​,⋯Aj​(i≤j) 之和是 K 的倍数,我们就称这个区间[i,j] 是 K 倍区间。

你能求出数列中总共有多少个 K 倍区间吗?

Input

第一行包含两个整数 N 和KMATH:0:(1≤Ai​≤1e5)。

Output

输出一个整数,代表 K 倍区间的数目。

Sample 1

InputOutput
5 2
1  
2  
3  
4  
5  
6

        因为本题的数据范围是1e5,第一想法是用前缀和预处理,再用两层for模拟左端点和右端点,如果前缀和数组(s[r]-s[l-1])%k==0则说明这段区间是k倍区间,但是由于数据范围是1e5,两层for会TLE,所以需要优化,因为(s[r]-s[l-1])%k==0,可以知道当两段区间的余数相同时,则这段区间为我们想要的,可以用动态规划的方式,dp数组表示当前前缀和%k=i的前缀和个数,将两层for循环变为一层for循环,时间复杂度降低。

        还有一点要注意的是,开变量的时候要long long ,因为我们前缀和数组是累加的,累加到最后数字会非常大,超出int类型2e10。

AC代码

#include<iostream>
using namespace std;
const int MAX=2e5+5;
typedef long long ll;
ll a[MAX];
ll sum[MAX];
ll n,k,ans;
ll dp[MAX];//表示当前前缀和%k=i的前缀和个数
int main()
{
	cin>>n>>k;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
	}
	for(int i=1;i<=n;i++)
	{
		sum[i]+=sum[i-1]+a[i];//预处理前缀和
	}
	dp[0]=1;
	for(int i=1;i<=n;i++)
	{
		ans+=dp[sum[i]%k];//但之后有找到前缀和%k与前一个相同的时候,答案+1
		dp[sum[i]%k]++;
	}
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值