夜深人静写算法(四十四)- 线段树

63 篇文章 313 订阅 ¥999.99 ¥499.90
线段树是一种数据结构,用于高效处理区间查询和更新操作。文章详细介绍了线段树的基本概念,包括二叉搜索树结构、数据域、指针表示和数组表示,并通过区间最值和区间求和的案例展示了线段树如何解决这些问题。此外,还探讨了线段树的基本操作如构造、更新和询问,以及如何处理区间染色、矩形面积并和区间K大数等经典案例。文章最后讨论了线段树的优化技巧,如离散化和lazy-tag,以及多维推广到二维和三维线段树的应用。
摘要由CSDN通过智能技术生成

一、引例

1、区间最值

  【例题1】给定一个 n ( n ≤ 100000 ) n(n \le 100000) n(n100000) 个元素的数组 A A A,有 m ( m ≤ 100000 ) m(m \le 100000) m(m100000) 个操作,共两种操作:
  1、Q a b 询问:表示询问区间 [a, b] 的最大值;
  2、C a c 更新:表示将第 a 个元素变成 c

  静态的区间最值可以利用 ST表 来解决,但是它在元素值给定的情况下进行的预处理,然后在 O ( 1 ) O(1) O(1) 时间内进行询问,这里第二种操作需要实时修改某个元素的值,所以无法进行预处理。
  由于每次操作都是独立事件,所以 m m m 次操作都无法互相影响,于是时间复杂度的改善只能在单次操作上进行优化了,我们可以试想能否将任何的区间 [ a , b ] ( a < b ) [a, b](a < b) [a,b](a<b) 都拆成 l o g 2 ( b − a + 1 ) log_2(b-a+1) log2(ba+1) 个小区间,然后只对这些拆散的区间进行询问,这样每次操作的最坏时间复杂度就变成 O ( l o g 2 ( n ) ) O(log_2(n)) O(log2(n)) 了。

2、区间求和

  【例题2】给定一个 n ( n ≤ 100000 ) n(n \le 100000) n(n100000) 个元素的数组 A A A,有 m ( m ≤ 100000 ) m(m \le 100000) m(m100000) 个操作,共两种操作:
  1、Q a b 询问:表示询问区间 [ a , b ] [a, b] [a,b] 的元素和;
  2、A a b c 更新:表示将区间 [ a , b ] [a, b] [a,b] 的每个元素加上一个值 c c c

  先来看朴素算法,两个操作都用遍历来完成,单次时间复杂度在最坏情况下都是 O ( n ) O(n) O(n) 的,所以 m m m 次操作下来总的时间复杂度就是 O ( n m ) O(nm) O(nm) 了,复杂度太高。
  再来看看树状数组,对于第一类操作,树状数组可以在 l o g 2 ( n ) log_2(n) log2(n) 的时间内出解;然而第二类操作,还是需要遍历每个元素执行 a d d add add 操作,复杂度为 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n),所以也不可行。这个问题同样也需要利用区间拆分的思想。
  线段树就是利用了区间拆分的思想,完美解决了上述问题。

二、线段树的基本概念

1、二叉搜索树

  线段树是一种二叉搜索树,即每个结点最多有两棵子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。线段树的每个结点存储了一个区间(线段),故而得名。

​​
  如图所示,表示的是一个 [ 1 , 6 ] [1, 6] [1,6] 的区间的线段树结构,每个结点存储一个区间(注意这里的存储区间并不是指存储这个区间里面所有的元素,而是只需要存储区间的左右端点即可),所有叶子结点表示的是单位区间(即左右端点相等的区间),所有非叶子结点(内部结点)都有左右两棵子树,对于所有非叶子结点,它表示的区间为 [ l , r ] [l, r] [l,r],那么令 m i d = ⌊ ( l + r ) 2 ⌋ mid = \lfloor \frac {(l + r)}{2} \rfloor mid=2(l+r),则它的左儿子表示的区间为 [ l , m i d ] [l, mid] [l,mid],右儿子表示的区间为 [ m i d + 1 , r ] [mid+1, r] [mid+1,r]。基于这个特性,这种二叉树的内部结点,一定有两个儿子结点,不会存在有左儿子但是没有右儿子的情况。
  基于这种结构,叶子结点保存一个对应原始数组下标的值,由于树是一个递归结构,两个子结点的区间并正好是父结点的区间,可以通过自底向上的计算在每个结点都计算出当前区间的最大值。
  需要注意的是,基于线段树的二分性质,所以它是一棵平衡树,树的高度为 O ( l o g 2 n ) O(log_2n) O(log2n)

2、数据域

  了解线段树的基本结构以后,看看每个结点的数据域,即需要存储哪些信息。
  首先,既然线段树的每个结点表示的是一个区间,那么必须知道这个结点管辖的是哪个区间,所以其中最重要的数据域就是区间左右端点 [ l , r ] [l, r] [l,r]。然而有时候为了节省全局空间,往往不会将区间端点存储在结点中,而是通过递归的传参进行传递,实时获取。
  再者,以区间最大值为例,每个结点除了需要知道所管辖的区间范围 [ l , r ] [l, r] [l,r] 以外,还需要存储一个当前区间内的最大值 m a x max max


  以数组 A [ 1 : 6 ] = [ 1 , 7 , 2 , 5 , 6 , 3 ] A[1:6] = [1, 7, 2, 5, 6, 3] A[1:6]=[1,7,2,5,6,3] 为例,建立如图所示的线段树,叶子结点的 m a x max max 域为数组对应下标的元素值,非叶子结点的 m a x max max 域则通过自底向上的计算由两个儿子结点的 m a x max max 域比较得出。这是一棵初始的线段树,接下来讨论下线段树的询问和更新操作。
  在询问某个区间的最大值时,我们一定可以将这个区间拆分成 O ( l o g 2 n ) O(log_2n) O(log2n) 个子区间,并且这些子区间一定都能在线段树的结点上找到(这一点下文会着重讲解),然后只要比较这些结点的 m a x max max 域,就能得出原区间的最大值了,因为子区间数量为 l o g 2 n log_2n log2n,所以时间复杂度是 O ( l o g 2 n ) O( log_2n ) O(log2n)
  更新数组某个元素的值时我们首先修改对应的叶子结点的 m a x max max 域,然后修改它的父结点的 m a x max max 域,以及祖先结点的 m a x max max 域,换言之,修改的只是线段树的 叶子结点到根结点的某一条路径上 m a x max max 域,又因为树高是 O ( l o g 2 n ) O(log_2n) O(log2n),所以这一步操作的时间复杂度也是 O ( l o g 2 n ) O(log_2n) O(log2n) 的。

3、指针表示

  接下来讨论一下结点的表示法,每个结点可以看成是一个结构体指针,由数据域和指针域组成,其中指针域有两个,分别为 左儿子指针右儿子指针,分别指向左右子树;数据域存储对应数据,根据情况而定 (如果是求区间最值,就存最值 m a x max max;求区间和就存和 s u m sum sum),这样就可以利用指针从根结点进行深度优先遍历了。
  以下是简单的线段树结点的 C++ 结构体:

struct treeNode {
    Data data;                 // 数据域
    treeNode *lson, *rson;     // 指针域
}*root;

4、数组表示

  实际计算过程中,还有一种更加方便的表示方法,就是基于数组的静态表示法,需要一个全局的结构体数组,每个结点对应数组中的一个元素,利用下标索引。
  例如,假设某个结点在数组中下标为 p p p,那么它的左儿子结点的下标就是 2 ∗ p 2*p 2p,右儿子结点的下标就是 2 ∗ p + 1 2*p+1 2p+1 (类似于一般数据结构书上说的堆在数组中的编号方式),这样可以将所有的线段树结点存储在相对连续的空间内。之所以说是相对连续的空间,是因为有些下标可能永远用不到。
  还是以长度为 6 6 6 的数组为例,如下图所示,红色数字表示结点对应的数组下标,由于树的结构和编号方式,导致数组的第 10、11 位置空缺。

  这种存储方式可以不用存子结点指针,取而代之的是当前结点的数组下标索引,以下是数组存储方式的线段树结点的C++结构体:

struct treeNode {        
    Data data;                         // 数据域
    int pid;                           // 数组下标索引
    int lson() { return pid << 1; }        
    int rson() { return pid<<1|1; }    // 利用位运算加速获取子结点编号
}nodes[ MAXNODES ];

  接下来我们关心的就是 MAXNODES的取值了,由于线段树是一种二叉树,所以当区间长度为 2 的幂时,它正好是一棵满二叉树,数组存储的利用率达到最高(即 100% ),根据等比数列求和可以得出,满二叉树的结点个数为 2 n − 1 2n-1 2n1,其中 n n n 为区间长度(由于C++中数组长度从0计数,编号从1开始,所以MAXNODES要取 2 n 2n 2n )。那么是否对于所有的区间长度n都满足这个公式呢?
  答案是否定的,当区间长度为 6 时,最大的结点编号为 13,而公式算出来的是 12( 2 × 6 2 \times 6 2×6)。
  那么 MAXNODES 取多少合适呢?
为了保险起见,我们可以先找到比 n n n 大的最小的2的次幂,然后再套用等比数列求和公式,这样就万无一失了。举个例子,当区间长度为 6 时,MAXNODES = 2 * 8;当区间长度为 1000,则 MAXNODES = 2 * 1024;当区间长度为 10000,MAXNODES = 2 * 16384。至于为什么可以这样,是基于区间长度和结点个数满足单调性,所以区间长度越长,需要的结点数越多。

三、线段树的基本操作

  线段树的基本操作包括构造、更新、询问,都是深度优先搜索的过程。

1、构造

  线段树的构造是一个二分递归的过程,封装好了之后代码非常简洁,总体思路就是从区间 [ 1 , n ] [1, n] [1,n] 开始拆分,拆分方式为二分的形式,将左半区间分配给左子树,右半区间分配给右子树,继续递归构造左右子树。
  当区间拆分到单位区间时(即遍历到了线段树的叶子结点),则执行回溯。回溯时对于任何一个非叶子结点需要根据两棵子树的情况进行统计,计算当前结点的数据域,详见注释4。

void segtree_build(int p, int l, int r) {
    nodes[p].reset(p, l, r);                  // (1)
    if (l < r) {
        int mid = (l + r) >> 1;
        segtree_build(p<<1, l, mid);          // (2)
        segtree_build(p<<1|1, mid+1, r);      // (3)
        nodes[p].updateFromSon();             // (4)
    }
}
  • (1) 初始化第 p p p 个结点的数据域,根据实际情况实现 r e s e t reset reset 函数;
  • (2) 递归构造左子树;
  • (3) 递归构造右子树;
  • (4) 回溯,利用左右子树的信息来更新当前结点,updateFromSon这个函数的实现需要根据实际情况进行求解,在第四节会详细讨论。构造线段树的调用如下:segtree_build(1, 1, n);

2、更新

  线段树的更新是指更新数组在 [ x , y ] [x, y] [x,y] 区间的值,具体更新这件事情是做了什么要根据具体情况而定,可以是将 [ x , y ] [x, y] [x,y] 区间的值都变成 v a l val val(覆盖),也可以是将 [ x , y ] [x, y] [x,y] 区间的值都加上 v a l val val(累加)。
  更新过程采用二分,将 [ 1 , n ] [1, n] [1,n] 区间不断拆分成一个个子区间 [ l , r ] [l, r] [l,r],当更新区间 [ x , y ] [x, y] [x,y] 完全覆盖被拆分的区间 [ l , r ] [l, r] [l,r] 时,则更新管辖 [ l , r ] [l, r] [l,r] 区间的结点的数据域,详见 注释2 和 注释3。

void segtree_insert(int p, int l, int r, int x, int y, ValueType val) {
    if( !is_intersect(l, r, x, y) ) {              // (1)
        return ;
    } 
    if( is_contain(l, r, x, y) ) {                 // (2)
        nodes[p].updateByValue(val);               // (3)
        return ;
    } 
    nodes[p].giveLazyToSon();                      // (4)
    int mid = (l + r) >> 1; 
    segtree_insert(p<<1, l, mid, x, y, val);       // (5)
    segtree_insert(p<<1|1, mid+1, r, x, y, val);   // (6)
    nodes[p].updateFromSon();                      // (7)
}
  • (1) 区间 [ l , r ] [l, r] [l,r] 和区间 [ x , y ] [x, y] [x,y] 无交集,直接返回;
  • (2) 区间 [ x , y ] [x, y] [x,y] 完全覆盖 [ l , r ] [l, r] [l,r]
  • (3) 更新第 p p p 个结点的数据域,updateByValue这个函数的实现需要根据具体情况而定,会在第四节进行详细讨论;
  • (4) 这里先卖个关子,参见第五节的 lazy-tag
  • (5) 递归更新左子树
  • (6) 递归更新右子树
  • (7) 回溯,利用左右子树的信息来更新当前结点
    更新区间 [ x , y ] [x, y] [x,y] 的值为 v a l val val 的调用如下:segtree_insert(1, 1, n, x, y, val);

3、询问

  线段树的询问和更新类似,大部分代码都是一样的,同样是将大区间 [ 1 , n ] [1, n] [1,n] 拆分成一个个小区间 [ l , r ] [l, r] [l,r],这里需要存储一个询问得到的结果 a n s ans ans,当询问区间 [ x , y ] [x, y] [x,y] 完全覆盖被拆分的区间 [ l , r ] [l, r] [l,r] 时,则用管辖 [ l , r ] [l, r] [l,r] 区间的结点的数据域来更新 ans,详见 注释1 的 mergeQuery接口。

void segtree_query (int p, int l, int r, int x, int y, treeNode& ans) {
    if( !is_intersect(l, r, x, y) ) {
        return ;
    }
    if( is_contain(l, r, x, y) ) {
        ans.mergeQuery(p);                          // (1)
        return;
    }
    nodes[p].giveLazyToSon();
    int mid = (l + r) >> 1; 
    segtree_query(p<<1, l, mid, x, y, ans);
    segtree_query(p<<1|1, mid+1, r, x, y, ans);
    nodes[p].updateFromSon();                       // (2)
}
  • (1) 更新当前解ans,会在第四节进行详细讨论;
  • (2) 和更新一样的代码,不再累述;

四、线段树的经典案例

  线段树的用法千奇百怪,接下来介绍几个线段树的经典案例,加深对线段树的理解。

1、区间最值

  区间最值是最常见的线段树问题,引例中已经提到。接下来从几个方面来讨论下区间最值是如何运作的。

1)数据域
    int pid;               // 数组索引
    int l, r;              // 结点区间(一般不需要存储)       
    ValyeType max;         // 区间最大值
2)初始化
void treeNode::reset(int p, int l, int r) {
    pid = p;
    max = srcArray[l]; // 初始化只对叶子结点有效
}
3)单点更新
void treeNode::updateByValue(ValyeType val) {
    max = val;
}
4)合并结点
void treeNode::mergeQuery(int p) {
    max = getmax( max, nodes[p].max );
}
5)回溯统计
void treeNode::updateFromSon() {
    max = nodes[ lson() ].max;
    mergeQuery( rson() );
}

  结合上一节线段树的基本操作,在构造线段树的时候,对每个结点执行了一次初始化,初始化同时也是单点更新的过程,然后在回溯的时候统计,统计实质上是合并左右结点的过程,合并结点做的事情就是更新最大值;询问就是将给定区间拆成一个个能够在线段树结点上找到的区间,然后合并这些结点的过程,合并的结果 ans一般通过引用进行传参,或者利用全局变量,不过尽量避免使用全局变量。

2、区间求和

  区间求和问题一般比区间最值稍稍复杂一点,因为涉及到区间更新和区间询问,如果更新和询问都只遍历到询问(更新)区间完全覆盖结点区间的话,会导致计算遗留,举个例子来说明。
  用一个数据域sum来记录线段树结点区间上所有元素的和,初始化所有结点的sum值都为0,然后在区间 [ 1 , 4 ] [1, 4] [1,4] 上给每个元素加上 4 4 4,如下图所示:

  图中 [ 1 , 4 ] [1, 4] [1,4] 区间完全覆盖 [ 1 , 3 ] [1, 3] [1,3] [ 4 , 4 ] [4, 4] [4,4] 两个子区间,然后分别将值累加到对应结点的数据域sum上,再通过回溯统计sum和,最后得到 [ 1 , 6 ] [1, 6] [1,6] 区间的sum和为16,看上去貌似天衣无缝,但是实际上操作一多就能看出这样做是有缺陷的。例如当我们要询问 [ 3 , 4 ] [3, 4] [3,4] 区间的元素和时,在线段树结点上得到被完全覆盖的两个子区间 [ 3 , 3 ] [3, 3] [3,3] [ 4 , 4 ] [4, 4] [4,4],累加区间和为 0 + 4 = 4,如下图所示:

  这是因为在进行区间更新的时候,由于 [ 1 , 4 ] [1, 4] [1,4] 区间完全覆盖 [ 1 , 3 ] [1, 3] [1,3] 区间,所以我们并没有继续往下遍历,而是直接在 [ 1 , 3 ] [1, 3] [1,3] 这个结点进行sum值的计算,计算完直接回溯。等到下一次访问 [ 3 , 3 ] [3, 3] [3,3] 的时候,它并不知道之前在3号位置上其实是有一个累加值 4 的,但是如果每次更新都更新到叶子结点,就会使得更新的复杂度变成 O ( n ) O(n) O(n),违背了使用线段树的初衷,所以这里需要引入一个 lazy-tag的概念。
  所谓lazy-tag,就是在某个结点打上一个 “懒惰标记”,每次更新的时候只要更新区间完全覆盖结点区间,就在这个结点打上一个 lazy标记,这个标记的值就是更新的值,表示这个区间上每个元素都有一个待累加值lazy,然后计算这个结点的sum,回溯统计sum
  当下次访问到有lazy标记的结点时,如果还需要往下访问它的子结点,则将它的 lazy标记传递给两个子结点,自己的lazy标记置空。
  这就是为什么在之前在讲线段树的更新和询问的时候有一个函数叫giveLazyToSon了。接下来看看一些函数的实现。

1)数据域
    int pid;               // 数组索引
    int len;               // 结点区间长度
    ValyeType sum;         // 区间元素和 
    ValyeType lazy;        // lazy tag
2)初始化
void treeNode::reset(int p, int l, int r) {
    pid = p;
    len = r - l + 1;
    sum = lazy = 0;
}
3)单点更新
void treeNode::updateByValue(ValyeType val) {
    lazy += val;
    sum += val * len;
}
4)lazy标记继承
void treeNode::giveLazyToSon() {
    if( lazy ) {
       nodes[ lson() ].updateByValue(lazy);
       nodes[ rson() ].updateByValue(lazy);
       lazy = 0;
    }
}
5)合并结点
void treeNode::mergeQuery(int p) {
    sum += nodes[p].sum;
}
6)回溯统计
void treeNode::updateFromSon() {
    sum = nodes[ lson() ].sum;
    mergeQuery( rson() );
}

  对比区间最值,区间求和的几个函数的实现主旨是一致的,因为引入了 lazy-tag,所以需要多实现一个函数用于lazy标记的继承,在进行区间求和的时候还需要记录一个区间的长度 len,用于更新的时候计算累加的 sum值。

联系作者获取英雄算法联盟优惠券

详情参见:英雄算法联盟

3、区间染色

【例题3】给定一个长度为 n ( n ≤ 100000 ) n(n \le 100000) n(n100000) 的木板,支持两种操作:
  1、P a b c [ a , b ] [a, b] [a,b] 区间段染色成 c c c
  2、Q a b 询问 [ a , b ] [a, b] [a,b] 区间内有多少种颜色;
保证染色的颜色数少于30种。

  对比区间求和,不同点在于区间求和的更新是对区间和进行累加;而这类染色问题则是对区间的值进行替换(或者叫覆盖),有一个比较特殊的条件是颜色数目小于30。
  我们是不是要将30种颜色的有无与否都存在线段树的结点上呢?答案是肯定的,但是这样一来每个结点都要存储 30 个 bool 值,空间太浪费,而且在计算合并操作的时候有一步30个元素的遍历,大大降低效率。然而 30 个bool值正好可以压缩在一个 int32 中,利用二进制压缩可以用一个32位的整型完美的存储 30种颜色的有无情况。
  因为任何一个整数都可以分解成二进制整数,二进制整数的每一位要么是0,要么是1。二进制整数的第 i i i 位是 1 表示存在第 i i i 种颜色;反之不存在。
  数据域需要存一个颜色种类的位或和 colorBit,一个颜色的 lazy标记表示这个结点被完全染成了 lazy,基本操作的几个函数和区间求和非常像,这里就不出示代码了。
  和区间求和不同的是回溯统计的时候,对于两个子结点的数据域不再是加和,而是位或和。

4、矩形面积并

【例题4】给定 n ( n ≤ 100000 ) n(n \le 100000) n(n100000) 个平行于 XY 轴的矩形,求它们的面积并。如图所示:

  这类二维的问题同样也可以用线段树求解,核心思想是降维,将某一维套用线段树,另外一维则用来枚举。具体过程如下:
  第一步:将所有矩形拆成两条垂直于 x x x 轴的线段,平行 x x x 轴的边可以舍去,如图所示:

  第二步:定义矩形的两条垂直于 x x x 轴的边中 x x x 坐标较小的为入边, x x x 坐标较大的为出边,入边权值为 + 1 +1 +1,出边权值为 − 1 -1 1,并将所有的线段按照 x x x 坐标递增排序,第 i i i 条线段的 x x x 坐标记为 X [ i ] X[i] X[i],如下图所示:

  第三步:将所有矩形端点的 y y y 坐标进行重映射(也可以叫离散化),原因是坐标有可能很大而且不一定是整数,将原坐标映射成小范围的整数可以作为数组下标,更方便计算,映射可以将所有 y y y 坐标进行排序去重,然后二分查找确定映射后的值,离散化的具体步骤下文会详细讲解。如图所示,蓝色数字表示的是离散后的坐标,即 1、2、3、4 分别对应原先的 5、10、23、25(需支持正查和反查)。假设离散后的 y y y 方向的坐标个数为 m m m,则y方向被分割成 m − 1 m-1 m1 个独立单元,下文称这些独立单元为“单位线段”,分别记为 [ 1 , 2 ] [1,2] [1,2], [ 2 , 3 ] [2,3] [2,3], [ 3 , 4 ] [3,4] [3,4]
在这里插入图片描述
  第四步:以 x x x 坐标递增的方式枚举每条垂直线段, y y y 方向用一个长度为 m − 1 m-1 m1 的数组来维护“单位线段”的权值,如图所示,展示了每条线段按 x x x 递增方式插入之后每个“单位线段”的权值。
  当枚举到第 i i i 条线段时,检查所有 “单位线段” 的权值,所有权值大于零的 “单位线段” 的实际长度之和 (离散化前的长度) 被称为“合法长度”,记为 L L L,那么 ( X [ i ] − X [ i − 1 ] ) ∗ L (X[i] - X[i-1]) * L (X[i]X[i1])L,就是第 i i i 条线段和第 i − 1 i-1 i1 条线段之间的矩形面积和,计算完第 i i i 条垂直线段后将它插入,所谓 “插入” 就是利用该线段的权值更新该线段对应的 “单位线段” 的权值和(这里的更新就是累加)。

  如下图所示:红色、黄色、蓝色三个矩形分别是 3 对相邻线段间的矩形面积和,其中红色部分的 y y y 方向由 [ 1 , 2 ] [1,2] [1,2] [ 2 , 3 ] [2,3] [2,3] 两个“单位线段”组成,黄色部分的 y y y 方向由 [ 1 , 2 ] [1,2] [1,2] [ 2 , 3 ] [2,3] [2,3] [ 3 , 4 ] [3,4] [3,4] 三个“单位线段”组成,蓝色部分的 y y y方向由 [ 2 , 3 ] [2,3] [2,3] [ 3 , 4 ] [3,4] [3,4] 两个“单位线段”组成。特殊的,在计算蓝色部分的时候, [ 1 , 2 ] [1,2] [1,2] 部分的权值由于第 3 条线段的插入( 第3条线段权值为-1 )而变为零,所以不能计入“合法长度”。
  以上所有相邻线段之间的面积和就是最后要求的矩形面积并。

   那么这里带来几个问题:
    1、是否任意相邻两条垂直 x x x 轴的线段之间组成的封闭图形都是矩形呢?答案是否定的,如下图所示,其中绿色部分为四个矩形的面积并中的某块有效部分,它们同处于两条相邻线段之间,但是中间有空隙,所以它并不是一个完整的矩形。
    2、每次枚举一条垂直线段的时候,需要检查所有“单位线段”的权值,如果用数组维护权值,那么这一步检查操作是 O ( m ) O(m) O(m) 的,所以总的时间复杂度为 O ( n m ) O(nm) O(nm),其中 n n n 表示垂直线段的个数,复杂度太大需要优化。

  优化自然就是用线段树了,之前提到了降维的思想, x x x 方向我们继续采用枚举,而 y y y 方向的“单位线段”则可以采用线段树来维护,和一般问题一样,首先讨论数据域。

    int pid;        // 数组索引
    int l, r;       // 结点代表的“单位线段”区间[l, r] (注意,l和r均为离散后的下标)
    int cover;      // [l, r]区间被完全覆盖的次数 
    int len;        // 该结点表示的区间内的合法长度

  注意,这次的线段树和之前的线段树稍微有点区别,就是叶子结点的区间端点不再相等,而是相差 1,即 l+1 == r。因为一个点对于计算面积来说是没有意义的。
  算法采用深度优先搜索的后序遍历,记插入线段为 [a, b, v],其中[a, b]为线段的两个端点,是离散化后的坐标;v是 +1 或 -1,代表是入边还是出边,每次插入操作二分枚举区间,当线段树的结点代表的区间被插入区间完全覆盖时,将权值 v累加到结点的 cover域上。由于是后序遍历,在子树全部遍历完毕后需要进行统计。插入过程修改 cover,同时更新 len
  回溯统计过程对 cover域分情况讨论:
  当 cover > 0时,表示该结点代表的区间至少有一条入边没有被出边抵消,换言之,这块区间都应该在 “合法长度” 之内,则 len = Y[r] - Y[l]Y[i]代表离散前第 i i i 大的点的 y y y 坐标);更加通俗的理解是至少存在一个矩形的入边被扫描到了,而出边还未被扫描到,所以这块面积需要被计算进来。
  当 cover = 0时,如果该区间是一个单位区间(即上文所说的“单位线段”,l+1 == r,也是线段树的叶子结点),则 len = 0;否则,len需要由左子树和右子树的计算结果得出,又因为是后序遍历,所以左右子树的 len都已经计算完毕,从而不需要再进行递归求解,直接将左右儿子的 len加和就是答案,即 len = lson.len + rson.len
  上图所示为上述例子的初始线段树,其中根结点管辖的区间为 [ 1 , 4 ] [1, 4] [1,4],代表 "单位线段” 的两个端点。对于线段树上任何一棵子树而言,根结点管辖区间为 [ l , r ] [l, r] [l,r],并且 m i d = ⌊ l + r 2 ⌋ mid = \lfloor \frac {l + r} {2} \rfloor mid=2l+r,那么如果它不是叶子结点,则它的左子树管辖的区间就是 [ l , m i d ] [l, mid] [l,mid],右子树管辖的区间就是 [ m i d , r ] [mid, r] [mid,r]。叶子结点管辖区间的左右端点之差为 1(和之前的线段树的区间分配方式稍有不同)。
这样就可以利用二分,在 O ( n ) O(n) O(n) 的时间内递归构造初始的线段树。

  上图所示为插入第一条垂直线段 [ 1 , 3 , 1 ] [1, 3, 1] [1,3,1](插入区间 [ 1 , 3 ] [1, 3] [1,3],权值为1)后的情况,插入过程类似建树过程,二分递归执行插入操作,当 插入区间完全覆盖线段树结点区间 时,将权值累加到对应结点(图中绿色箭头指向的结点)的cover域上;否则,继续递归左右子树。然后进行自底向上的统计,统计的是 len的值。
   [ 2 , 4 ] [2, 4] [2,4] 这个结点的 cover域为0,所以它的 l e n len len 等于两棵子树的len之和, [ 1 , 4 ] [1, 4] [1,4] 亦然。

  如上图所示为插入第二条垂直线段 [ 2 , 4 , 1 ] [2, 4, 1] [2,4,1](插入区间 [ 2 , 4 ] [2, 4] [2,4],权值为1)后的情况,只需要修改一个结点(图中绿色箭头指向的结点)的 cover域,该结点的两棵子树不需要再进行递归计算,回溯的时候,计算根结点 len值时,由于根结点的 cover域为0,所以它的 len等于左右子树的 len之和。

  继续如上图所示为插入第三条垂直线段 [ 1 , 3 , − 1 ] [1, 3, -1] [1,3,1](插入区间 [ 1 , 3 ] [1, 3] [1,3],权值为 -1)后的情况,直观的看,现在 Y 方向只有 [ 2 , 4 ] [2, 4] [2,4] 一条线段了,所以根结点的 l e n len len 就是 Y [ 4 ] − Y [ 2 ] = 15 Y[4] - Y[2] = 15 Y[4]Y[2]=15

  讲完插入,就要谈谈询问。在每次插入之前,需要询问之前插入的线段中,在 y y y 方向的“合法长度” L L L,根据线段树结点的定义, y y y 方向“合法长度”总和其实就是根结点的 len,所以这一步询问操作其实是 O ( 1 ) O(1) O(1) 的,在插入过程中已经实时计算出来,再加上插入的 O ( l o g n ) O(log n) O(logn) 的时间复杂度,已经完美解决了上述复杂度太大的问题了。
​​

5、区间K大数

【例题5】给定 n ( n ≤ 100000 ) n(n \le 100000) n(n100000) 个数的数组,然后 m ( m ≤ 100000 ) m(m \le 100000) m(m100000) 条询问,询问格式如下:
  1、l r k 询问 [ l , r ] [l, r] [l,r] 的第 K 大的数的值

  这是一个经典的面试题,利用了线段树划分区间的思想,线段树的每个结点存的不只是区间端点,而是这个区间内所有的数,并且是按照递增顺序有序排列的,建树过程是一个归并排序的过程,从叶子结点自底向上进行归并,对于一个长度为 6 的数组 [ 4 , 3 , 2 , 1 , 5 , 6 ] [4, 3, 2, 1, 5, 6] [4,3,2,1,5,6],建立线段树如图所示:

  从图中可以看出,线段树的任何一个结点存储了对应区间的数,并且进行有序排列,所以根结点存储的一定是一个长度为数组总长的有序数组,叶子结点存储的递增序列为原数组元素。
  每次询问,我们将给定区间拆分成一个个线段树上的子区间,然后二分枚举答案 T,再利用二分查找统计这些子区间中大于等于 T 的数的个数,从而确定 T 是否是第K大的。
  对于区间K大数的问题,还有很多数据结构都能解决,这里仅作简单介绍。

五、线段树的常用技巧

1、离散化

  在讲解矩形面积并的时候曾经提了一下离散化,现在再详细的说明一下,所谓离散化就是将无限的个体映射到有限的个体中,从而提高算法效率。
  举个简单的例子,一个实数数组,我想很快的得到某个数在整个数组里是第几大的,并且询问数很多,不允许每次都遍历数组进行比较。
  那么,最直观的想法就是对原数组先进行一个排序,询问的时候只需要通过二分查找就能在 O ( l o g 2 n ) O( log_2n ) O(log2n) 的时间内得出这个数是第几大的了,离散化就是做了这一步映射。
  对于一个数组 [ 1.6 , 7.8 , 5.5 , 11.1111 , 99999 , 5.5 ] [1.6, 7.8, 5.5, 11.1111, 99999, 5.5] [1.6,7.8,5.5,11.1111,99999,5.5],离散化就是将原来的实数映射成整数(下标),如图所示:

  这样就可以将原来的实数保存在一个有序数组中,询问第 K 大的是什么称为正查,可以利用下标索引在 O ( 1 ) O(1) O(1) 的时间内得到答案;询问某个数是第几大的称为反查,可以利用 二分查找 或者 哈希表 得到答案,复杂度取决于具体算法,一般为 O ( l o g 2 n ) O(log_2n) O(log2n)

2、lazy-tag

  这个标记一般用于处理线段树的区间更新。
  线段树在进行区间更新的时候,为了提高更新的效率,所以每次更新只更新到更新区间完全覆盖线段树结点区间为止,这样就会导致被更新结点的子孙结点的区间得不到需要更新的信息,所以在被更新结点上打上一个标记,称为 lazy-tag,等到下次访问这个结点的子结点时再将这个标记传递给子结点,所以也可以叫延迟标记。

3、子树收缩

  子树收缩是子树继承的逆过程,子树继承是为了两棵子树获得父结点的信息;而子树收缩则是在回溯的时候,如果两棵子树拥有相同数据的时候在将数据传递给父结点,子树的数据清空,这样下次在访问的时候就可以减少访问的结点数。

六、线段树的多维推广

1、二维线段树 - 矩形树

  线段树是处理区间问题的,二维线段树就是处理平面问题的了,曾经写过一篇二维线段树的文章,就不贴过来了,直接给出传送门:二维线段树。

2、三维线段树 - 空间树

  线段树-二叉树,二维线段树-四叉树,三维线段树自然就是八叉树了,分割的是空间,一般用于三维计算几何,当然也不一定用在实质的空间内的问题。
  比如需要找出身高、体重、年龄在一定范围内并且颜值最高的女子,就可以用三维线段树(三维空间最值问题),嘿嘿嘿!!!

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

英雄哪里出来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值