给定 n
个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1
。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
以上是柱状图的示例,其中每个柱子的宽度为 1,给定的高度为 [2,1,5,6,2,3]。
图中阴影部分为所能勾勒出的最大矩形面积,其面积为 10
个单位。
示例:
输入: [2,1,5,6,2,3]
输出: 10
解答
首先容易想到的是暴力搜索,分别以heights[i]
为矩形的高,再中心扩展求矩形宽,但是最后超时了:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int result = 0;
for(int i = 0; i < heights.size(); i++){
int height = heights[i];
int left = i, right = i;
while(left >= 0 && heights[left] >= height){
left--;
}
while(right < heights.size() && heights[right] >= height){
right++;
}
result = max(result, height * (right - left - 1));
}
return result;
}
};
暴力搜索为O(n^2)
复杂度,使用单调栈维护左边最高柱子的高度,每当遍历到heights[i]
时,同栈顶元素对比,若大于栈顶,则直接入栈,否则依次出栈,此时出栈元素对应于前面暴力搜索解法的作为矩阵高度的柱子,heights[i]
相当于右边界,为栈顶柱子右侧第一个小于其高度的柱子,出栈后新的栈顶一定时旧栈顶元素左侧第一个小于其高度的柱子(在开头添加一个0,保证永远存在)相当于左边界,于是求得矩阵面积。为了避免柱子高度全部为递增或递减序列,可以在开头末尾添加一个0
:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
// 开头末尾添加0
vector<int> temp(heights.size() + 2, 0);
copy(heights.begin(), heights.end(), temp.begin() + 1);
int result = 0;
stack<int> s;
for(int i = 0; i < temp.size(); i++){
while(!s.empty() && temp[s.top()] > temp[i]){
int height = temp[s.top()];
s.pop();
int weight = i - s.top() - 1;
result = max(result, height * weight);
}
s.push(i);
}
return result;
}
};