当 A
的子数组 A[i], A[i+1], ..., A[j]
满足下列条件时,我们称其为湍流子数组:
若 i <= k < j
,当 k
为奇数时, A[k] > A[k+1]
,且当 k
为偶数时,A[k] < A[k+1]
;
或 若 i <= k < j
,当 k
为偶数时,A[k] > A[k+1]
,且当 k
为奇数时, A[k] < A[k+1]
。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。
返回 A
的最大湍流子数组的长度。
示例 1:
输入:[9,4,2,10,7,8,8,1,9]
输出:5
解释:(A[1] > A[2] < A[3] > A[4] < A[5])
示例 2:
输入:[4,8,12,16]
输出:2
示例 3:
输入:[100]
输出:1
提示:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
解答
依然是滑动窗。相邻元素间可能存在>, <, =
三种大小关系,可以分别使用flag = {-1, 1, 0}
来表示这三种关系,显然相邻三个元素间的两个flag
相乘应该等于-1
才符合题意,否则将滑动窗口右移。注意一些特例的处理。
class Solution {
public:
int maxTurbulenceSize(vector<int>& arr) {
if(arr.size() < 2)
return arr.size();
int flag = 0;
// 至少为1
int result = 1;
int left = 0;
for(int i = 0; i < arr.size() - 1; i++){
int new_flag;
if(arr[i] > arr[i+1])
new_flag = -1;
else if(arr[i] < arr[i+1])
new_flag = 1;
else
new_flag = 0;
if(i > 0){
if(flag * new_flag == -1){
result = max(result, i - left + 2);
}
else{
left = i;
}
}
// 处理最开头的两个元素
else if(new_flag != 0){
result = 2;
}
flag = new_flag;
}
return result;
}
};
参考讨论区,使用动态规划,并优化空间复杂度。up
表示以arr[i]
结尾,并且末尾呈上升趋势,即arr[i-1]<arr[i]
的湍流长度;同理down
表示以arri[i]
结尾,且arr[i-1]>arr[i]
的湍流长度:
class Solution {
public:
int maxTurbulenceSize(vector<int>& arr) {
int up = 1;
int down = 1;
int result = 1;
for(int i = 1; i < arr.size(); i++){
if(arr[i-1] > arr[i]){
down = up + 1;
up = 1;
}
else if(arr[i-1] < arr[i]){
up = down + 1;
down = 1;
}
else{
up = 1;
down = 1;
}
result = max(result, max(up, down));
}
return result;
}
};