978. 最长湍流子数组

A 的子数组 A[i], A[i+1], ..., A[j] 满足下列条件时,我们称其为湍流子数组:

i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1]
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。

返回 A 的最大湍流子数组的长度。

示例 1:

输入:[9,4,2,10,7,8,8,1,9]
输出:5
解释:(A[1] > A[2] < A[3] > A[4] < A[5])

示例 2:

输入:[4,8,12,16]
输出:2

示例 3:

输入:[100]
输出:1

提示:

  • 1 <= A.length <= 40000
  • 0 <= A[i] <= 10^9

解答

依然是滑动窗。相邻元素间可能存在>, <, =三种大小关系,可以分别使用flag = {-1, 1, 0}来表示这三种关系,显然相邻三个元素间的两个flag相乘应该等于-1才符合题意,否则将滑动窗口右移。注意一些特例的处理。

class Solution {
public:
    int maxTurbulenceSize(vector<int>& arr) {
        if(arr.size() < 2)
            return arr.size();
        int flag = 0;
        // 至少为1
        int result = 1;
        int left = 0;
        for(int i = 0; i < arr.size() - 1; i++){
            int new_flag;
            if(arr[i] > arr[i+1])
                new_flag = -1;
            else if(arr[i] < arr[i+1])
                new_flag = 1;
            else
                new_flag = 0;
            
            if(i > 0){
                if(flag * new_flag == -1){
                    result = max(result, i - left + 2);
                }
                else{
                    left = i;
                }
            }
            // 处理最开头的两个元素
            else if(new_flag != 0){
                result = 2;
            }
            flag = new_flag;

        }
        return result;
    }
};

参考讨论区,使用动态规划,并优化空间复杂度。up表示以arr[i]结尾,并且末尾呈上升趋势,即arr[i-1]<arr[i]的湍流长度;同理down表示以arri[i]结尾,且arr[i-1]>arr[i]的湍流长度:

class Solution {
public:
    int maxTurbulenceSize(vector<int>& arr) {
        int up = 1;
        int down = 1;
        int result = 1;
        for(int i = 1; i < arr.size(); i++){
            if(arr[i-1] > arr[i]){
                down = up + 1;
                up = 1;
            }
            else if(arr[i-1] < arr[i]){
                up = down + 1;
                down = 1;
            }
            else{
                up = 1;
                down = 1;
            }
            result = max(result, max(up, down));
        }
        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值