一-得到一个矩阵
1-自己输入,分号为分行
2-保存为M文件,以后clear(清楚所有变量)之后可以直接打开M的文件名,不用load
3-写在一个txt里面,数组名就是文件名,然后clear之后可以load some.txt
二-删除
调用格式:A(:, n) = [], A(m, :) = []
A(:, n) = []表示删除矩阵A的第n列
A(m, :) = []表示删除矩阵A的第m行
三-扩展
调用格式:D = [A; B C]
A为原矩阵,B, C中包含要扩充的元素,D为扩充后的矩阵
四-翻转
行数不变,左右上下旋转那种
五-矩阵变维
A = [1, 2, 5, 4; 6, 7, 0, 1];
B = ones(4, 2);//4行二列初始化矩阵
B(:) = A(:);//赋值
·reshape
A = [1:8];
B = reshape(A, 2, 4);
B = reshape(A, 4, 2);
六-矩阵引用与特殊矩阵生成
引用比如
arrayName(m1:m2, n) | 引用二维数组第n列中m1到m2行的元素 |
七-字符串矩阵
差距不大,包括一些转化那些
八-cell矩阵
B(1, 1) = {[1, 4, 3; 0, 5, 8; 7, 2, 9]};
B(1, 2) = {'Anne cat'};
B(2, 1) = {3 + 7i};
B(2, 2) = {0:pi/10:pi};
celldisp(B) cellplot(B)
矩阵的运算
1.矩阵的加减运算
运算符:+, -
运算规则:对应元素相加减
2.矩阵的乘法运算
运算符:, .
运算规则:* 矩阵乘法, .* 矩阵对应元素相乘(数组运算)
3.矩阵的除法运算
运算符:, /, ./, .\
运算规则:\ 矩阵左除, /矩阵右除, ./矩阵点左除, .\矩阵点右除
进一步解释:x = A\B是方程A*x = B的解,x = A/B是方程x*A = B的解
若A为非奇异矩阵,则A\B和B/A可如下获得:
A\B = inv(A)*B
A/B = B*inv(A)
4.矩阵的乘方运算
运算符:^, .^
运算规则:^ A^p表示矩阵的乘方, .^ A.^B表示矩阵A的数量乘方
^ 具体要求:A为方阵,p为大于零的整数时,A^p表示A自乘p次;p为小于零的整数时,A^p表示A的逆的|p|次方
.^具体要求:A.^p表示A中每个元素的p次乘方。维度相同的A、B矩阵求A.^B,表示矩阵A中元素对矩阵B中对应元素求幂。结果矩阵与原矩阵维度相同
5.矩阵的转置
运算符:’
运算规则
若矩阵A的元素为实数、则A’返回A的转置
若矩阵A为复数矩阵,则A’中的元素由A对应元素的共轭复数构成
6.矩阵的逆
运算符:inv
调用格式:B = inv(A)
7.矩阵的特征值
运算符:eig
调用格式:eig(A)
8.求矩阵的特征多项式
运算符:poly
调用格式:ploy(A)
9.求矩阵的秩
运算符:rank
调用格式:rank(A)
10.求矩阵元素的个数
运算符:numel
调用格式:numel(A)
11.方阵的行列式
运算符:det
调用格式:det(A)
12.方阵的迹
运算符:trace
调用格式:trace(A)
多项式的构造
1.直接输入法
A = [1, 3, 5, 7, 9, 0, 0]
2.使用poly方法(根因式展开)
A = [1, -34, -80, 0, 0]
poly(A) //得到的是关于A的特征多项式
3.使用poly2sym方法
A = [1, -34, -80, 0, 0];
PA = ploy(A);
poly2sym(PA) //将这个多项式带着X展示出来
多项式的运算
1.多项式的加减运算
运算符:+, -
注意事项:运算符两侧应具有相同的阶次,如果阶次不同,低阶的多项式必须用零填补到高阶多项式的阶次
2.多项式的乘法运算
调用函数:conv(a, b)
3.多项式的除法运算
调用函数:deconv(a, b)
调用格式:[div, rest] = deconv(a, b)
其中,div是商多项式,rest是余数多项式。
a = [5, 4, 3, 2, 1];
b = [3, 0, 1];
[div, rest] = deconv(a, b);
1
2
3
4.多项式的微分运算
调用函数:polyder
调用格式:B = polyder(A)
5.多项式求根
调用函数:roots
调用格式:X = roots(A)
6.多项式求值
调用函数:polyval, polyvalm
调用格式:
对点求值:B = polyval(A, a)
对矩阵求值:B = polyvalm(A, M)
求解问题:
solve比较全能,附上solve的方法
插值——预测
其实就是得到一组离散的数据,现在要将自变量细分化将步数取小,然后通过interp得到取小后的因变量
然后再画图 ,这里2是用mesh,画三维网格图