MATLAB学习笔记——矩阵,多项式,插值预测

一-得到一个矩阵

1-自己输入,分号为分行

2-保存为M文件,以后clear(清楚所有变量)之后可以直接打开M的文件名,不用load

3-写在一个txt里面,数组名就是文件名,然后clear之后可以load  some.txt

二-删除

调用格式:A(:, n) = [], A(m, :) = [] 
A(:, n) = []表示删除矩阵A的第n列 
A(m, :) = []表示删除矩阵A的第m行

三-扩展

调用格式:D = [A; B C] 
A为原矩阵,B, C中包含要扩充的元素,D为扩充后的矩阵

四-翻转

行数不变,左右上下旋转那种

五-矩阵变维

A = [1, 2, 5, 4; 6, 7, 0, 1];
B = ones(4, 2);//4行二列初始化矩阵
B(:) = A(:);//赋值

·reshape 

A = [1:8];
B = reshape(A, 2, 4);
B = reshape(A, 4, 2);

六-矩阵引用与特殊矩阵生成

引用比如

arrayName(m1:m2, n)引用二维数组第n列中m1到m2行的元素

七-字符串矩阵

差距不大,包括一些转化那些

八-cell矩阵

B(1, 1) = {[1, 4, 3; 0, 5, 8; 7, 2, 9]};

B(1, 2) = {'Anne cat'};

B(2, 1) = {3 + 7i};

B(2, 2) = {0:pi/10:pi};

celldisp(B) cellplot(B)


矩阵的运算

1.矩阵的加减运算 
运算符:+, - 
运算规则:对应元素相加减

2.矩阵的乘法运算 
运算符:, . 
运算规则:* 矩阵乘法, .* 矩阵对应元素相乘(数组运算)

3.矩阵的除法运算 
运算符:, /, ./, .\ 
运算规则:\ 矩阵左除, /矩阵右除, ./矩阵点左除, .\矩阵点右除 
进一步解释:x = A\B是方程A*x = B的解,x = A/B是方程x*A = B的解 
若A为非奇异矩阵,则A\B和B/A可如下获得: 
A\B = inv(A)*B 
A/B = B*inv(A)

4.矩阵的乘方运算 
运算符:^, .^ 
运算规则:^ A^p表示矩阵的乘方, .^ A.^B表示矩阵A的数量乘方 
^ 具体要求:A为方阵,p为大于零的整数时,A^p表示A自乘p次;p为小于零的整数时,A^p表示A的逆的|p|次方 
.^具体要求:A.^p表示A中每个元素的p次乘方。维度相同的A、B矩阵求A.^B,表示矩阵A中元素对矩阵B中对应元素求幂。结果矩阵与原矩阵维度相同

5.矩阵的转置 
运算符:’

运算规则
若矩阵A的元素为实数、则A’返回A的转置
若矩阵A为复数矩阵,则A’中的元素由A对应元素的共轭复数构成
6.矩阵的逆 
运算符:inv 
调用格式:B = inv(A)

7.矩阵的特征值 
运算符:eig 
调用格式:eig(A)

8.求矩阵的特征多项式 
运算符:poly 
调用格式:ploy(A)

9.求矩阵的秩 
运算符:rank 
调用格式:rank(A)

10.求矩阵元素的个数 
运算符:numel 
调用格式:numel(A)

11.方阵的行列式 
运算符:det 
调用格式:det(A)

12.方阵的迹 
运算符:trace 
调用格式:trace(A)
 


多项式的构造

1.直接输入法

A = [1, 3, 5, 7, 9, 0, 0]

2.使用poly方法(根因式展开)

A = [1, -34, -80, 0, 0]
poly(A)                                  //得到的是关于A的特征多项式

3.使用poly2sym方法

A = [1, -34, -80, 0, 0];
PA = ploy(A);
poly2sym(PA)            //将这个多项式带着X展示出来

 

多项式的运算

1.多项式的加减运算 
运算符:+, - 
注意事项:运算符两侧应具有相同的阶次,如果阶次不同,低阶的多项式必须用零填补到高阶多项式的阶次

2.多项式的乘法运算 
调用函数:conv(a, b)

3.多项式的除法运算 
调用函数:deconv(a, b) 
调用格式:[div, rest] = deconv(a, b) 
其中,div是商多项式,rest是余数多项式。

a = [5, 4, 3, 2, 1];
b = [3, 0, 1];
[div, rest] = deconv(a, b);
1
2
3
4.多项式的微分运算 
调用函数:polyder 
调用格式:B = polyder(A)

5.多项式求根 
调用函数:roots 
调用格式:X = roots(A)

6.多项式求值 
调用函数:polyval, polyvalm 
调用格式: 
对点求值:B = polyval(A, a) 
对矩阵求值:B = polyvalm(A, M)
 

求解问题:

solve比较全能,附上solve的方法 


插值——预测

 

 

 

 

其实就是得到一组离散的数据,现在要将自变量细分化将步数取小,然后通过interp得到取小后的因变量

然后再画图 ,这里2是用mesh,画三维网格图

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值