Description
小Q在电子工艺实习课上学习焊接电路板。一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3….进行标号。电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点,都存在且仅存在一条通路(通路指连接两个元件的导线序列)。在电路板上存在一个特殊的元件称为“激发器”。当激发器工作后,产生一个激励电流,通过导线传向每一个它所连接的节点。而中间节点接收到激励电流后,得到信息,并将该激励电流传向与它连接并且尚未接收到激励电流的节点。最终,激烈电流将到达一些“终止节点”——接收激励电流之后不再转发的节点。激励电流在导线上的传播是需要花费时间的,对于每条边e,激励电流通过它需要的时间为te,而节点接收到激励电流后的转发可以认为是在瞬间完成的。现在这块电路板要求每一个“终止节点”同时得到激励电路——即保持时态同步。由于当前的构造并不符合时态同步的要求,故需要通过改变连接线的构造。目前小Q有一个道具,使用一次该道具,可以使得激励电流通过某条连接导线的时间增加一个单位。请问小Q最少使用多少次道具才可使得所有的“终止节点”时态同步?
Input
第一行包含一个正整数N,表示电路板中节点的个数。第二行包含一个整数S,为该电路板的激发器的编号。接下来N-1行,每行三个整数a , b , t。表示该条导线连接节点a与节点b,且激励电流通过这条导线需要t个单位时间。
Output
仅包含一个整数V,为小Q最少使用的道具次数。
Sample Input
3
1
1 2 1
1 3 3
Sample Output
2
【数据规模】
对于40%的数据,N ≤ 1000
对于100%的数据,N ≤ 500000
对于所有的数据,te ≤ 1000000
一次后续遍历,每次让所有的子树都和“最慢”的结点保持同步,把所有的这样的代价累加即可。无奈在Windows系统下爆栈,只能过70分。
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
typedef long long int64;
const int maxN = 500010;
const int64 INF = 0x3f3f3f3f3f3f3f3fLL;
struct Edge
{
int u, v; int64 d; Edge *next; Edge() {}
Edge(int u, int v, int64 d, Edge *next):
u(u), v(v), d(d), next(next) {}
} *edge[maxN];
bool marked[maxN]; int n, S; int64 dist[maxN], ans;
void Dfs(int &u)
{
int64 Max = 0; dist[u] = 0; marked[u] = 1;
for (Edge *p = edge[u]; p; p = p -> next)
if (!marked[p -> v])
{
Dfs(p -> v);
Max = std::max(Max, p -> d + dist[p -> v]);
}
for (Edge *p = edge[u]; p; p = p -> next)
if (!marked[p -> v])
{
ans += Max - dist[p -> v] - p -> d;
dist[p -> v] = Max - p -> d;
}
dist[u] = Max; marked[u] = 0;
return;
}
inline int getint()
{
int res = 0; char tmp;
while (!isdigit(tmp = getchar()));
do res = (res << 3) + (res << 1) + tmp - '0';
while (isdigit(tmp = getchar()));
return res;
}
int main()
{
freopen("synch.in", "r", stdin);
freopen("synch.out", "w", stdout);
n = getint(); S = getint();
for (int i = 1; i < n; ++i)
{
int u = getint(), v = getint();
int64 d = getint();
edge[u] = new Edge(u, v, d, edge[u]);
edge[v] = new Edge(v, u, d, edge[v]);
}
Dfs(S);
printf("%I64d\n", ans);
return 0;
}